R؟UTE28 CORRIDOR STUDY

FROM RITTANNING TO I-80

TECHNICAL APPENDICES

November 2020

Prepared by

PMccorimick TAYLOR

STERN PRN/
${ }^{\circ} \mathrm{OMMISSINO}^{0}$

Appendices

A. Steering Committee Meeting Minutes
B. Public Comments Received
C. Online Mapping Survey Questions
D. Public Concern Map
E. Stakeholder Meeting Minutes
F. Existing Conditions Report
G. Intersection Level of Service 2019 AM/PM and 2045 AM/PM
H. Route 28 Design Criteria
I. SPC Funding Program

APPENDIX A

 Steering Committee Meeting Minutes| Meeting: | Steering Committee Kickoff Meeting | Date: | December 5, 2019 |
| :--- | :--- | :--- | :--- |
| Location: | Armstrong County Planning and Development Office | Time: | 12:30pm to 2:30pm |
| Attendees: | See attached sign-in sheet | | |
| Purpose: | The purpose of the meeting was to kick-off the Route 28 Corridor Study Project. | | |

Discussion: The project kick-off meeting was held to discuss the Route 28 Corridor Study development, community outreach, initial goals and concern areas, and project schedule. John Petulla, consultant Project Manager began the meeting by welcoming the meeting attendees. Each Steering Committee member introduced themselves and provided the organization they represent. Each member was provided a packet with project related materials.

1) Mr. Petulla continued the presentation by reviewing the study area map. The study area includes Route 28 from Kittanning to Interstate 80 near Brookville. An overall study area map was provided in the packet and shown on a large format board at the front of the room for review. The attendees were asked to provide feedback or comments on the map. The map will be used throughout the study as the basis for displaying technical and non-technical information and the results displayed within the final report. Amy Kessler commented that the insets should be labeled, and the orange leader lines blend in with the yellow background. McCormick Taylor will adjust the map for subsequent versions. Additional feedback regarding the study area map was encouraged to be provided after the meeting via email.

The meeting continued with a small group exercise to discuss the draft project goals. Based upon initial study observations by the project team, the study team developed and presented the following draft goals:

- Increase Safety
- Support Economic Development
- Accommodate Mulitimodal Use
- Reduce Congestion
- Facilitate Freight Movement
- Improve Quality of Life

The attendees were split into the following three groups:

Group 1: Josh Spano, Lillian Gabreski, Kristi Amato, Dave Tomaswick, John Petulla
Group 2: Tim Jablunovsky, Domenic D’Andrea, Jamie Lefever, Travis Siegel, Melissa Thomas
Group 3: Ryan Gordon, Darren Alviano, Amy Kessler, Ashley Tracy
The Steering Committee was asked to provide input on the draft goals and/or add to the list as needed. Discussion related to the draft goals included the following:

- Improve Safety - for all modes of transportation (trucks, cars, trail, pedestrians and cyclists). General safety and specific safety improvements related to the roadway is a high priority throughout the corridor.
- Support Regional Economic Development - freight and trade along the Route 28 corridor is likely a key part of economic importance of the corridor. The value of the cargo moving along the Route 28 Corridor should be compared to the overall gross domestic product (GDP) for Pennsylvania as a potential economic performance measure of cargo moving through the corridor. Wayfinding signage for Route 28 from I-80 and from Pittsburgh is limited, and that affects tourism as well. Consider the larger businesses currently in the corridor and how improvements may impact them.
- Accommodate Multimodal Use - there are needs at existing trail crossings. There are potential pedestrian improvements needed in New Bethlehem. Consider potential new trail opportunities along the corridor.
- Reduce Congestion / Improve Operations - congestion is a lower priority as the corridor is not traditionally congested. Recommendations may include climbing lanes, passing lanes, signals, which would improve general operation of the corridor. Crashes on I-80 resulting in traffic using Route 28 as a detour route can result in secondary roads being gridlocked for hours as traffic diverts around I-80. Due to the frequency of crashes on I-80, consideration should be given to better notify drivers of congested secondary routes and potential choices before roadways become over saturated with vehicles. During an incident on I-80 resulting in a detour on Route 28, common congestion points and temporary or permanent solutions to reduce bottlenecks and improve emergency response times should be considered. In addition, the potential impact along the Route 28 corridor if $1-80$ becomes a toll road in the future was discussed. Providing reliable travel times for current businesses and residents, regional travel, and emergency response times was noted as being an important consideration.
- Facilitate Freight Movement / Regional Connectivity - it was noted freight movement is directly correlated to economic development. Consideration should be given to inadequate turning radii and making the first and last mile connections for delivery of freight. For instance, in New Bethlehem trucks park along Route 28 and block lanes of traffic to service the businesses. There are also areas where trucks park on the corridor overnight, which points to a need for truck parking in the corridor.
- Environmental / Quality of Life - the term "quality of life" needs to be better qualified. Environmental considerations may include improved stormwater infrastructure, identifying food deserts, and improving access for trail connections and access to public resources. Quality of life will be influenced by the ability to achieve the other goals such as safety, reliability, and supporting accessibility for all modes.
- Resiliency / Reliability - the corridor needs to consistently support roadway users to provide reliable travel times for typical traffic and to better accommodate road closures and emergency detour routes.
- Tourism - this was added as it is a federal planning factor. Route 28 corridor serves traffic to the south to Pittsburgh, as well as traffic to the north to Allegheny National Forest, Punxsutawney, trails and rivers outside the study area, and the Oil Heritage region. Armstrong County and Kittanning have a lot of historical sites, which could be better marketed.
- Security - this was added as it is a federal planning factor. This may include emergency vehicle travel times, and the status of critical assets such as bridges and highways. The hospital location on the corridor and service area access should be considered. There are not many appropriate helicopter landing spots on the corridor. The Pennsylvania State Police Barracks is in Kittanning and coverage area expands into several communities along the corridor. It was noted Volunteer Fire Departments are struggling to recruit members and keep up their funding, and reluctant to combine services with other departments. The fire department coverage along the corridor is not ideal.
- Asset Preservation - we need to consider asset management of key roadway features along the corridor and planning to maintain a good state of repair.
- Community Buy-in/Satisfaction - community support of the study and proposed improvements is important. We need to balance community needs with regional needs. This may include reducing impacts to communities during construction. Communities may not want to attract additional regional traffic, though some may not want traffic diverted away from the corridor that potentially could take away business. The study should consider the community support behind each project. Community outreach will also be key for the public to understand and be able to provide input on the study as well as proposed future projects along the corridor.

2) Melissa Thomas, consultant Assistant Project Manager reviewed the project team's approach to public involvement. A project logo was developed for the corridor study with SPC's input and presented to the Steering Committee. The proposed website address is www.Route28CorridorStudy.com. The official project email address to send out correspondence and provide responses to feedback and questions is Route28CorridorStudy@mccormicktaylor.com.
The website is anticipated to include 4 main pages consisting of:

- About the Study
- Corridor Details
- Public Outreach
- Study Outcomes

The Route 28 Corridor Study website will host the Wiki-Map under the Public Outreach section. The Public Outreach section will allow users to comment on the study as well as pinpoint areas of concern along the corridor. Website display options are currently in the development process. Similar to the Route 28 Corridor Study logo, the draft website options will be sent to the Steering Committee for comment prior to implementation. The draft questions for the public on the Wiki-Map will be customized to the corridor. A sample of the draft user questions are attached to this summary for review and comments. It was discussed to make the website more public friendly, the project team may want to consider a story map imbedded on the website to better display study results.

McCormick Taylor anticipates collaborating with the Stakeholders to help inform the public of the Route 28 Study and ask for public input on the Wiki-Map section of the website. Members of the Steering committee suggested contacting the various active Chambers of Commerce located along the corridor including but not limited to Armstrong County, New Bethlehem, and Brookville. It was advised that the Chambers of Commerce could provide specific input on the website and the help distribute information obtain additional public input from their communities. McCormick Taylor will provide hard copies of the final questions for users who may not wish to complete the survey online. McCormick Taylor will discuss this option with the stakeholders further after the website is developed.

Domenic D'Andrea asked if McCormick Taylor has a social media plan for the study like Twitter, Facebook, etc. Ms. Tracy stated it was not scoped as part of the outreach, but that a social media platform could be considered for public outreach. Mr. D'Andrea mentioned they successfully used Streetlight data for the Second Avenue Study to get a list of zip codes of people who traverse the corridor, and sent targeted advertisements to those people on Facebook. Ms. Tracy asked if Mr. D'Andrea knew what the cost of the targeted ads was, and Mr. D'Andrea said that it was about $\$ 50$. Mr. Petulla agreed the application this collection of information may work well to gain information and target users to gain input on the Route 28 Corridor.

Interviews of key stakeholders along the corridor to obtain a better understanding of the corridor needs and potential areas of improvements were discussed. The project team requested the Steering Committee provide feedback on potential stakeholders to be interviewed. A request will be made via email by the project team for this information after the meeting.

Ms. Kessler stated that the North Central's Public Participation Plan (PPP) does not allow meetings past 5pm as there is no transit available to the public after that time. McCormick Taylor will review the PPP for each MPO/RPO to determine the required outreach time frames and tailor the outreach to fit that. Ms. Lefever suggested that we should look at when the Chambers of Commerce have their meetings and try to do this as part of a regularly scheduled meeting, or back-to-back with one.
3) Ashley Tracy, consultant Traffic Lead, discussed traffic data collected to date. Data collection includes turning movement counts (TMC) and twenty-four hour automated traffic recorder (ATR) counts at key locations provided by SPC in the scope of services. Mr. Spano and Mr. Gordon mentioned that it would be possible to supplement the count data with Streetlight data. A comparison will be made between the TMC data obtained and the Streetlight data to verify the reliability of Streetlight count information before being incorporated into the study. Mr. D'Andrea mentioned the study team should review the Regional Operations Plans (ROP) to ensure the analysis is consistent with the respective plans.

INRIX data has been transferred from SPC to McCormick Taylor, which should give us a sense of travel times during the off-peak and peak directions. McCormick Taylor performed a preliminary crash history analysis and showed how the fatal and hit fixed object crash analysis may highlight areas for further consideration during field views. There was discussion of whether these crash maps would be shown on the study website. PennDOT indicated that have to be careful about the specifics of crash data and the language we use that will be displayed on the Route 28 website. Mr. D'Andrea stated it should be permitted to show a general crash area map with the specific crash information removed.

Signal permit plans were provided from PennDOT District 10 to McCormick Taylor to be used in the Synchro analysis of the existing and future conditions which will be completed in the next few months. Upcoming work on the data collection includes developing the data collection plan, analyzing the Streetlight data, and performing existing and future traffic analyses. SPC and Western PA Regional Operations Plans will be incorporated as well.
4) Mr. Petulla directed the Steering Committee back into their working groups for the second group activity of the meeting. This activity asked the participants to mark up the provided corridor map with initial areas of concern. The initial areas of concern discussed during the meeting were not prioritized:

- Route 422 at Rt 28 - interchange upgrade for additional capacity, potential for economic development.
- Route 85 at Rt 28 - economic development opportunity nearby, there is a 60 -acre site for sale by the county.
- Route 66 and Route 28 - turning radii difficult to navigate.
- Route 28 and SR 1018 - intersection with sight distance issues.
- Selker Curve - sharp horizontal curve that may be a safety concern.
- Mayport Curve - sharp horizontal curve that may be a safety concern.
- Baxter Curve - sharp horizontal curve that may be a safety concern.
- Fish Basket - trail crossing, pedestrian \& bicycle safety area that improvement options should be considered.
- Hays Run - structure replacement and widening project currently programmed. May need additional upgrades adjacent to the project area in the future.
- Sight Distance - potential for coordination with utilities through the corridor for tree trimming where warranted to improve sight distance.
- General - truck climbing lanes and passing lanes where warranted. Slow trucks can delay travel time through the corridor by at least 30 minutes.
- General - guiderail applications, centerline and shoulder rumble strip applications, and shoulder width should be applied consistently per PennDOT design criteria through the corridor.
- General - deer crossings or accidents involving deer through the corridor.
- General - intermittent roadway flooding. Mr. Gordon and Ms. Kessler have dates of flooding events when Route 28 has been closed. Ms. Lefever mentioned a few flooded locations between New Bethlehem and Brookville. McCormick Taylor will attempt to obtain photos of the mentioned locations and consult PennDOT Maintenance for additional information on areas of flooding concern.
- General - emergency access and service times, especially related to the various volunteer fire department access along the corridor.
- General - applications of Streetlight data to support analysis and decisions for the Route 28 Corridor Study. Streetlight data may provide an avenue for innovative uses - i.e. target Facebook ads to the survey and public meetings, gain insight on travel patterns on specific days of incidents when I-80 is detoured, or if Route 28 is detoured. Streetlight has the potential to capture car and truck travel times, travel time reliability, limited multimodal travel, the estimated value of commercial goods traveling on the road. SPC expanded their license to have access to obtain Streetlight data along the Route 28 Corridor within Clarion and Jefferson Counties within the study area. This will enable the study team to be able to provide a consistent analysis of Streetlight data throughout the study area.
- General - potential to evaluate practicality of high friction pavement along sharp curves, microsurfacing, shoulder width in the corridor.

Additionally, Mr. Tomaswick provided a list of potential improvement recommendation locations from District 10 Safety Coordinator William Rankin, PennDOT District 10 (see attached list).
5) The following is a list of next steps discussed during the meeting:

Follow-Ups			
Follow-up item	Responsible party	Anticipated completion	Actual Completion
Provide Draft Wiki-Map survey questions for Steering Committee review.	McCormick Taylor	December 2019	
Develop pilot webpages	McCormick Taylor		
Streetlight Data provided to McCormick Taylor	SPC	January 2020	
Analyze collected Traffic Data obtained from French Engineering	McCormick Taylor	January 2020	
Obtain Public Participation Plan (PPP) for each MPO/RPO involved to determine required outreach. Determine active Chambers of Commerce along the corridor and dates of next upcoming meetings.	McCormick Taylor.	January 2020	
Provide list of Stakeholder to be interviewed.	Steering Committee	January 2020	
Conference Call to discuss Pilot Website and Stakeholder Interviews to be scheduled.	McCormick Taylor/ Steering Committee		

The meeting was adjourned at approximately 2:25 p.m. by thanking the committee for their feedback during this meeting and throughout the study.

Prepared by:

McCORMICK TAYLOR, INC.

Copies:
Attendees
MT Project File

Attachments:

Meeting Sign-in Sheet
PennDOT District 10 - Corridor Safety Concerns List
Draft Wiki Map Survey Questions

Tomaswick, David P

From: Rankin, William
Sent: Wednesday, December 4, 2019 10:02 AM
To:
Subject:

Tomaswick, David P

SR28

Sight distance at:

- 10-1 Sloan Hill Rd.
- 10-1 Oscar Rd. (SR1035)
- 10-1 Calhoun School Rd. (SR1016)
- 10-1 Tipple Rd.
- 10-3 Oak Ridge Rd. (SR2019)
- 10-5 Mendenhall Rd. (SR3035

The approach off of:

- 10-1 Oscar Rd. (SR1035)
- 10-1 Putneyville Rd. (SR839)
- 10-5 Seldom Seen Rd.
- 10-5 Snyder Rd.

Turning lane needed at:

- 10-1 SR1018 SB

The curves at:

- 10-1 SR1018
- 10-1 hogback area
- 10-1 South Bethlehem - (kohlersburg Rd)
- 10-3 Alcola - (TR-921)
- 10-5 Snyder Rd.

Speeding areas:

- Shannondale

ADD A POINT

1. Select a point type* and then place on map.

- Travelling via a car
- Travelling via bike
- Travelling via walking
- Travelling via truck/freight vehicle

2. I use this area for: (Select all that apply)

- Local commuting (Less than 40 miles each way)
- Regional commuting (More than 40 miles each way)
- Business travel (Deliveries, moving freight, etc.)
- Accessing government services
- Accessing Redbank Valley Trail
- Accessing local schools
- Accessing stores, services, goods, healthcare
- Accessing recreational opportunities

3. How frequently do you use this facility?

- Daily
- Weekly
- Monthly

4. What about this location causes you concerns? [CARS]

- Pedestrians in the roadway
- Cyclists in the roadway
- Excessive vehicle speed
- Slow trucks cause delays
- General congestion
- Stopping or turning vehicles
- Lack of connectivity
- Other (open-ended)

5. What about this location causes you concerns? [BIKES]

- No shoulder
- Shoulder is too narrow
- Poor shoulder condition
- Travel lanes need to be swept
- Lack of bike lane
- Lack of protected bike lane
- Travel lanes are too narrow
- Drainage grates make facility unusable or hazardous

[^0]
Route 28 Corridor Study Wiki-map Survey Questions

- Vehicles are going too fast
- Too many large trucks
- Lack of enforcement
- Lack of connectivity to transit facilities
- Other (open-ended)

6. What about this location causes you concerns? [FREIGHT]

- Pedestrians in the roadway
- Cyclists in the roadway
- Excessive vehicle speed
- Grades are too steep
- No climbing lane on steep grade
- Travel lanes are too narrow
- Intersection too narrow to safely turn
- General congestion
- Stopping or turning vehicles
- Lack of connectivity
- Other (open-ended)

7. What about this location causes you concerns? [WALKING]

- Sidewalk ends/no sidewalk
- Sidewalk condition
- No shoulder
- Shoulder is too narrow
- Poor shoulder condition
- Drainage grates make facility unusable or hazardous
- Excessive vehicle speed
- No crosswalk
- Vehicles don't stop for pedestrians in crosswalks
- Sidewalk not Americans with Disabilities Act (ADA) compliant
- Lack of enforcement
- Other (open-ended)

8. What improvements would you suggest for this location? (open-ended)
9. Do you have a photo of this area of concern for us to consider? Please upload it here.
10. Is there any other information you would like us to know about the Route 28 corridor? (openended)
[^1]Subject: Steering Committee Coordination Call
Date: \quad Friday $1 / 24 / 2020 ; 1: 00 \mathrm{pm}$ to 2 pm
Location: Conference Call

John Petulla, McCormick Taylor, began the meeting by welcoming all those who called in and asking for each to introduce themselves. The list of all in attendance can be found at the end of this summary.

Study Goal Review \& Discussion

Mr. Petulla then reviewed the Study Goals which were refined after the Steering Committee Kick-off Meeting held in December 2019. No additional changes or additions were discussed, and the refined Study Goals and associated guiding principles are:
\checkmark Improve Safety - Improve safety for all modes of transportation

- Improve Security - Improve security by maintaining critical assets like bridges and reducing emergency response times
\checkmark Support Regional Economic Development - Improve access to existing business and attract new businesses with an improved and efficient regional trade route between I-80 and Pittsburgh
- Promote Tourism - Facilitate access to historic locations, trails, and outdoors activities
\checkmark Facilitate Regional Connectivity - Facilitate connections to other regional transportation facilities and systems
- Accommodate Multimodal Use - Improve existing and plan for new multimodal connections to non-motorized facilities
- Accommodate Freight Movement - Facilitate and improve access for freight and trucks
\checkmark Improve Operations - Improve operations and reduce congestion
- Improve Resiliency/Reliability - Provide reliable travel times for all users
- Focus on Asset Preservation - Maintain a good state of repair of bridges, guide rail, signs, drainage, slopes, lighting, and pavement
\checkmark Minimize Impacts - Minimize impacts to the environment and community
- Improve Quality of Life - Improve quality of life by providing access to a safe and efficient transportation system and public resources
- Gain Community Buy-in/Satisfaction - promote projects that have broad community support and meet the study's goals, and minimize impacts to the traveling public during construction

Website and Wikimap Survey Draft

Jennifer Threats, McCormick Taylor, then discussed the public outreach efforts that will be used to promote the Study in the region.

The McCormick Taylor team developed a Wikimap online mapping survey to collect input from the general public about specific areas of concern along the corridor. The team anticipates that the mapping survey will be ready to launch during the week of February 3 and remain open through the week of March 2. The survey is available for review at:
https://wikimapping.com/Route-28-Corridor-Study-Kittanning-to-l-80.html

A few comments and suggestions for the Wikimap survey were discussed:

- The map is mobile friendly and the survey feature is also functional on mobile devices.
- The current draft of the survey only allows for comments within the study boundary, but all in attendance agreed that viewers should be able to place points on all areas of the map. This will be adjusted before the map is circulated for further Steering Committee review.
- There is no character limit in the paragraph survey fields, so there should not be a risk of cutting off a response due to lack of space.

The other web-based public outreach tool is a study website, currently in development. The website will be launched at the same time as the Wikimap survey and will be available at: www.Route28CorridorStudy.com. The link to the test website will be shared with the Steering Committee members on January 27 or 28 for testing and review.

A press release and email blast will announce the launch of the website and Wikimap survey. The McCormick Taylor team will distribute the email blast to the Steering Committee who are encouraged to share it with their own connections. Social media graphics and text will also be developed for use by Steering Committee members on their organizations' social media accounts. Mr. Petulla asked the representatives from PennDOT District 10 if they would ask the Community Relations Coordinator to distribute the press release to their usual media contacts as well. He will send the draft press release to Tim Jablunovsky and Dave Tomaswick who will discuss with the Community Relations Coordinator.

Stakeholder Outreach

The study team will also conduct interviews with key stakeholders along the corridor. The Steering Committee provided names and contact information for several organizations and individuals who will be invited to participate. The current list of stakeholders will be shared with the committee to fill in any missing information or add additional contacts. Jamie Lefever, Jefferson County, mentioned that she will also reach out to any stakeholders within her contact network to encourage them to participate in the interviews. All agreed that this was a good approach for others on the committee to take.

Ms. Threats reviewed the draft Stakeholder Interview Plan with the committee, including potential locations for the interviews. The committee suggested additional locations, and the team will investigate the availability. The interviews will be tentatively held during the week of February 17 or 24 , pending availability of the locations and the team members and committee members who will be attending.

A draft interview form was drafted to guide the discussion at the interviews. Ryan Gordon, Southwestern Pennsylvania Commission (SPC), suggested beginning with a short discussion of the locations with known safety or similar concerns to spark the discussion.

Other Study Updates

The McCormick Taylor team is continuing to review previous studies and plans related to the Route 28 Corridor for consideration during the study.

Traffic data collection is complete, including Synchro software analysis at all of the intersections. Highway Capacity Software (HCS) analysis will be completed next, and it may show more congestion that the Synchro analysis has so far. The McCormick Taylor team is coordinating with SPC to secure data from the Streetlight transportation analytics platform. All field work is also completed.

The next steps in traffic data analysis will include Synchro and HCS data for the future year, and the study team will need additional information from the Steering Committee regarding known planned development to come to an estimated growth rate to make those projections.

Next Steps

The Study Team will work toward the following milestones in the coming months:

- Public survey and website launch - early February - early March 2020
- Stakeholder interviews - late February 2020
- Existing conditions memo - March 2020
- Steering Committee call/meeting - mid-March 2020

Resulting Action Items

- John Petulla will send the draft press release to Dave Tomaswick and Tim Jablunovsky to share with the Community Relations Coordinator.
- Ryan Gordon, SPC, will distribute all materials discussed at the meeting for review and feedback from the committee:
o Draft press release
o Draft announcement email blast
o Draft Stakeholder Interview plan
o Draft Stakeholder Interview form
o Potential Stakeholder Interview invitation list
o Website
o Wikimap survey

Attendee List:

Darin Alviano	Armstrong County
Kristi Amato	Clarion County
Jamie Lefever	Jefferson County
Amy Kessler	North Central PA Regional Planning and Development Commission
Tim Jablunovsky	PennDOT District 10
Dave Tomaswick	PennDOT District 10
Dom D'Andrea	SPC
Ryan Gordon	SPC
Josh Spano	SPC
Andy Waple	SPC
Carrie Machuga	McCormick Taylor
John Petulla	McCormick Taylor
Melissa Thomas	McCormick Taylor
Jennifer Threats	McCormick Taylor
Ashley Tracy	McCormick Taylor

fROM RITTANNING TO I-80

Meeting: Steering Committee Meeting \#3
 Location: Conference Call

Attendees:

Steering Committee:

Darin Alviano	Armstrong County
Kristi Amato	Clarion County
Jamie Lefever	Jefferson County
Amy Kessler	Northcentral RPO
Travis Siegel	Northwest RPO
Dave Tomaswick	PennDOT District 10
Tim Jablunovsky	PennDOT District 10
Lillian Gabreski	Southwestern Pennsylvania Commission
Josh Spano	Southwestern Pennsylvania Commission
Domenic D'Andrea	Southwestern Pennsylvania Commission
Ryan Gordon	Southwestern Pennsylvania Commission

Date: April 28, 2020
Time: 10:00am - 12:00pm

McCormick Taylor Study Team:
John Petulla
Ashley Tracy
Melissa Thomas
Jennifer Threats
Carrie Machuga

Purpose:

The purpose of the meeting was to review the initial draft Existing Conditions Report and related findings.

Discussion:

The third Steering Committee meeting was held to discuss the Route 28 Corridor Study work completed to date and related findings which are documented in the draft Existing Conditions Report. John Petulla, consultant Study Project Manager began the meeting by welcoming the meeting attendees. Each Steering Committee member introduced themselves and provided the organization they represent. In advance of the meeting, the Committee received the meeting agenda, the draft Existing Conditions Report and the draft Concerns Evaluation Matrix.

Progress to Date - Existing Conditions Report Overview

Ashley Tracy, Study Traffic Lead, reviewed the Existing Conditions Report and related data collection. She reviewed the conditions identified in the field analysis, which was conducted in January 2020. The examined areas were identified by the Steering Committee or through desktop research prior to field work, including locations with limited sight distance due to the horizontal and vertical curvature of the roadway or locations of tight geometry that are difficult for large vehicles to navigate. Speed differentials were noticeable, with a spectrum ranging from speeding in excess of the 55 mph posted speed limit, aggressive passing behavior, and vehicles traveling $10-15 \mathrm{mph}$ below the speed limit.

Ms. Tracy also reviewed the information collected during Stakeholder Interviews in late February. The Steering Committee identified key stakeholders including county commissioners, municipal leaders, business owners, freight haulers, school district staff, emergency service providers, and state police. Seventeen (17) organizations participated in the interviews and provided valuable local insight and input to the study.

She then reviewed the data received from the Streetlight "big-data" platform. Streetlight provides roadway analytics from anonymized Bluetooth and cellular device information which can be analyzed to examine travel behavior and traveler demographics. Access to the Streetlight data service was provided by the Southwestern Pennsylvania Commission's subscription in support of the Route 28 Corridor Study.

The data was analyzed to understand existing travel conditions on the Route 28 corridor, such as the lengths of trips. More than half of the trips on the corridor are over 60 minutes in duration, with a large number of trips over 150 minutes. This trip duration includes commercial vehicle traffic, which may have hauling routes along the corridor or destined northward to Forest, Elk or

Venango counties. Trip lengths correspond with the trip duration, with a majority of trips longer than 30 miles. More than half of the travel speeds are between 30 and 50mph, with approximately 15% traveling 50 to 70 mph .

The study team reviewed the distribution of trips passing a point near the intersection of Route 28 and South Main Street in Brookville. It showed traffic coming from approximately Williamsport and Brookville in the east, from areas slightly north of the l-80 interchange such as Sigel and Brockway south through Kittanning and Pittsburgh. Approximately 15\% of trips passing this point are destined to Kittanning, and approximately 4\% of trips passing this intersection are destined to Pittsburgh. This finding shows that the corridor primarily serves demand to Kittanning and communities along the Route 28 corridor, rather than functioning currently as a regional through route.

Examining a Top Route from Pittsburgh to a point east of Brookville, Streetlight highlighted two main routes: the Route 28 corridor, and the I-79 to I-80 corridor. The Streetlight Index is a proportional approximation of traffic along the route. The Streetlight Index for the Route 28 corridor (80.6 miles, 1 h 31 m) is 65 versus an index of 26 for $\mathrm{I}-79$ to $\mathrm{I}-80$ (118 miles, 1 h 50 m). This means that Route 28 is approximately three times more popular than I-79 to I-80 for this trip. However, the team did not observe a significant amount of through traffic on this route because there is not significant demand between these two points (as outlined above).

Streetlight data was also used to identify additional characteristics of the corridor users:

- Who does the Route 28 corridor serve? Travelers on this 40 -mile section of the Route 28 corridor primarily live and work in areas adjacent to the corridor to the east and west. The cluster of home locations stretches as far southwest as Pittsburgh, with a few isolated clusters focused primarily in places that are accessible via Route 28, I-80, I-79, US 422, and US 322 such as Youngstown, Erie, Altoona, and State College.
- Where are people going on the Route 28 corridor, and at what levels of frequency? The team used a point in the middle of the corridor to show all personal trips passing through this point on a weekday and their origins and destinations. The data showed a distinct diagonal pattern of trips that follows the corridor, with a large geographic catchment area in the northeast counties (Forest, Elk, Warren, McKean, Clearfield, Cameron) for Route 28 traffic destined to Kittanning and Pittsburgh, as well as hauling or tourist-related traffic for outdoors activities to the northeast counties.
- How are people using the multimodal facilities on the corridor? The Open Street Map alignment data for the Redbank Valley Trail and Armstrong County Trail were imported to understand bicycle and pedestrian usage of the trail system, including trail user demographics and trip characteristics. The largest proportion of trips on the corridor are 45-60 minutes in length, which reveals a tremendous benefit to public health in the communities that it serves.

Ms. Tracy also reviewed the information gleaned from INRIX data. INRIX is a data repository for historical congested travel speeds and travel times. SPC provided observed speed and travel time data for the corridor from INRIX. Speeding is a noted concern throughout the corridor. In areas like New Bethlehem, maximum speeds range from 35 to 40 mph in the posted 25 mph zone. Most segments in the corridor have maximum observed speeds trending above 55 mph , and on average, the maximum speeds for cars on the corridor is 57 mph . The average maximum speed for trucks on the corridor is 51 mph . This 6 mph speed differential is exacerbated on areas where there are significant grades. The longest segment of speed differential between cars and trucks is from approximately Goheenville to Distant (5 to 10 mph difference) over the area known locally as Hogback Hill. Field observations and GIS data noted areas of significant grade change in this area. Another segment with a high-speed differential between cars and trucks is coming into South Bethlehem around the 15 mph curve through New Bethlehem (10 to 15 mph difference).

INRIX historical speed data was also used to understand the range of influence and operational impact of I-80 detour traffic on the corridor. The team studied data related to an incident on August 8th, 2016 where l-80 was closed from around 2 pm through the afternoon peak hours. Average observed speeds dropped at various points along the corridor during the closure, first and most noticeably at the intersection with Route 322 close to the interchange and later and to a lesser extent as far south as Kittanning. This analysis supports that interstate closures can have widespread impacts on the corridor traffic operations. This in conjunction with detour route choice and signage, and travelers using personal devices to navigate off of $1-80$ create bottleneck conditions that are challenging for emergency responders, residents, and the traveling public.

Melissa Thomas, Study Highway Lead, discussed the team's review of previous and related studies. Seven (7) related documents were reviewed, including the most recent corridor feasibility study, State Route 28 Feasibility Study Kittanning to I-80 Armstrong, Clarion \& Jefferson Counties, Pennsylvania, conducted by Michael Baker, International in June 1994.
This feasibility study examined Route 28 between Kittanning, PA and Interstate 80 . The initial recommendation based on a Preliminary Location Study for State Route 28 completed by The Pennsylvania Department of Transportation in the 1960's was to
extend a 4 lane, limited access facility from Aspinwall to I-80. A portion of this was built in the 1970 s and 1980 s terminating in Kittanning, PA. This study examined the feasibility of continuing the 4 -lane template from Kittanning to I-80. Ms. Thomas discussed the review of Michael Baker's cost estimate and how the estimate was escalated to 2020 dollars. While this estimate accounts for the construction cost, it does not take into account more stringent modern environmental regulations. In particular, regulations related to stormwater management, water quality treatment and the mitigation of protected environmental features. Accounting of this design, permitting, environmental and community impacts, construction, and future maintenance, presents potentially hidden costs which would place a further strain on initial design and construction costs and future PennDOT maintenance of the permitted stormwater and mitigation features.

Tim Jablunovsky, PennDOT District 10, asked about the construction engineering cost comparison. The team used the same 5\% construction engineering cost that was cited in the 1994 study for the 2020 estimate. Mr. Jablunovsky requested the estimate to be updated using the current standard of 10%.

County and regional comprehensive plans were also reviewed for recommendations and future goals. Amy Kessler, Northcentral RPO, noted that the Northcentral and Northwest RPO Long Range Transportation Plans were not listed with the other related studies. The team will review both of those documents and add any findings to the Existing Conditions Report.

Ms. Thomas also reviewed the corridor geometric conditions. The team developed Design Criteria charts considering new construction following guidance found in PennDOT Publication 13M Design Manual Part 2 Highway Design. The design criteria data was used as a basis for comparison to the existing Route 28 Study Corridor roadway geometry and widths.

Existing horizontal radii through the corridor were weighted against the current design criteria. In examining the corridor, there are currently 18 notable areas with horizontal radii less than that current recommended design values. Speeds up to 40 MPH were limited to a maximum super elevation rate of 6%. For the higher speed limits 45 MPH \& 55 MPH a slightly higher maximum super elevation rate of 8% is permitted with shoulder rounding.

Existing vertical grades vary throughout the corridor. Many sections have grades exceeding the desired current design maximum vertical grades of 5% (55 MPH) or 6% (up to 45 MPH). Excessive vertical grades not only make maintaining speeds difficult for larger truck traffic but also can limit sight distance for passing or entering roadways at intersections. In examining the corridor, there are 10 notable areas with vertical grades exceeding the current maximum design grade.

Jennifer Threats and Carrie Machuga, Study Public Involvement staff, reviewed the outreach conducted to collect feedback from the general public. In order to collect broad public input on the current conditions of the Route 28 Corridor from Kittanning to I-80, the study team utilized an online WikiMap survey. The survey was available at https://wikimapping.com/Route-28-Corridor-Study-Kittanning-to-l-80.html from Friday, February 7 through Friday, March 6, 2020. The Steering Committee member organizations promoted the survey through a press release, emails, and social media. Direct links to the mapping survey were also available on the study website (www.Route28CorridorStudy.com).

The interactive map allowed users to place points on a map of the corridor to identify areas of concern or opportunities for improvement related to vehicular, freight, bicycle, and pedestrian traffic. Each mode included targeted survey questions to collect specific details about the concern or opportunity.

During the course of the survey period, 305 total points were placed by 151 unique users. A majority (269) of points were related to vehicular traffic. Nineteen (19) were related to freight; ten (10) related to pedestrians; and seven (7) related to bicycles.

The survey points revealed common areas of concern, some of which were corridor-wide. Areas of concern were summarized into 31 unique locations. In each survey by travel mode, the public was prompted to select from several options for "What about this location causes you concern?" While each mode varied slightly in the options, the most common concerns were roadway safety; vehicle speeds, slow moving vehicles, intersection sight distance, and visibility of pedestrians and bicycles on the roadway.

Mr. Petulla then reviewed the Study Concern Matrix, which collected the concern locations that were documented in all aspects of data collection and studies. Thirty-eight (38) locations were listed in the matrix, and the Study Team indicated in columns across the matrix how the location was identified as a concern. These included previous studies, stakeholder interviews, public surveys, field observations, horizontal curvature, vertical grade, crash history, and existing operations. The team then noted the number of
times the location was found to prioritize these concern areas. Locations that were found in five or more data collection points were listed as High Priority. All others were listed as Moderate.

The team requested feedback from the Steering Committee within two weeks regarding the methodology for identifying these locations, whether they agree with the draft prioritization as presented, or if there are additional locations that should be considered higher priority.

Mr. Petulla then opened the meeting for discussion. The following questions or comments were discussed:

- The Committee requested a map of all locations on the Study Concern Matrix to provide a more visual context of each concern location.
- The Committee asked whether public input from other surveys and studies had been included. To this point, that input had not been considered, but the team will review the following for public concerns related to the corridor:
o State Transportation Commission Twelve Year Program Updates in 2017 and 2019
o North Central and Northwest RPOs' recent Long Range Transportation Plan updates
o North Central RPO Safety Plan
- The Committee also noted that PennDOT Central Office has recently updated the Highway Safety Manual and associated Highway Safety Network Screening which provides predicted crash data (not only observed) for various roadway types. This information may be helpful to identify potential or predicted safety concern locations in addition to the observed safety concern locations. SPC offered to provide access to this tool and data.
- The Committee asked what methodology was used to warrant a check in the crash \% column of the matrix. Ashley indicated that anything that was higher than the statewide average was included.
- Dominic D'Andrea asked if the team reviewed the Highway Safety Predictive Model. Ashley indicated the model had not been considered, but the team will review moving forward.
- Amy Kessler mentioned the Freight Plan Survey noted a comment related to potential truck turning issues at the intersection of Main Street and Route 28 in Brookville and a curve on Route 28 between Seldom Seen Road and Coder Road that is very dangerous.

The following is a list of next steps discussed during the meeting:

Follow-Ups	Responsible Party	Anticipated Completion	Actual Completion
Follow-up item	Resporn	$4 / 28$	$4 / 28$
Map all concern locations listed in matrix and provide to the Steering Committee	McCormick Taylor	$4 / 29$	
Review additional public input from previous surveys/studies	McCormick Taylor	$5 / 1$	
Review relevant corridor information from Northwest and Northcentral RPO LRTPs, Northcentral Safety Plan	McCormick Taylor	$5 / 8$	$5 / 11$
Review Highway Safety Predictive Model	McCormick Taylor	$5 / 11$	$5 / 11$
Update the construction engineering cost assumption from 5\% to 10\% per Tim Jablunovsky	McCormick Taylor	$5 / 11$	
Provide feedback on methodology and prioritization of concern areas	Steering Committee	$5 / 12$	

The meeting was adjourned at approximately 12:00 p.m. by thanking the committee for their feedback during this meeting and throughout the study.

Prepared by:
McCORMICK TAYLOR, INC.

Copies:
Attendees
MT Project File

Attachments:
Study Concern Matrix
Draft Existing Conditions Report

Meeting: Steering Committee Meeting \#4
Location: Conference Call

Date: June 10, 2020
Time: 1:00pm - 2:30pm

Attendees:

Steering Committee:

Darin Alviano	Armstrong County
Kristi Amato	Clarion County
Amy Kessler	Northcentral RPO
Travis Siegel	Northwest RPO
Dave Tomaswick	PennDOT District 10
Tim Jablunovsky	PennDOT District 10
Lillian Gabreski	Southwestern Pennsylvania Commission
Josh Spano	Southwestern Pennsylvania Commission
Domenic D'Andrea	Southwestern Pennsylvania Commission
Ryan Gordon	Southwestern Pennsylvania Commission

McCormick Taylor Study Team:
John Petulla
Melissa Thomas
Jennifer Threats
Carrie Machuga

Purpose:

The purpose of the meeting was to discuss the results of the Future Conditions Analysis, review the potential Improvement Concepts, and outline the next steps to draft and finalize the Study Report.

Discussion:

John Petulla, consultant Study Project Manager, began the meeting by welcoming all attendees and asking all Steering Committee members to introduce themselves. In advance of the meeting, the Steering Committee received the meeting agenda, draft final study report outline, draft improvement concept mapping, and the concern area matrix and mapping.

Mr. Petulla briefly reviewed the work done since the previous Steering Committee meeting, including updates to the concern area matrix. The team also reviewed additional studies as suggested by the committee and updated the matrix with some additional concerns found there. The matrix was updated to show the locations with higher occurrence across the various data collection and analysis sources.

The team mapped the concern areas from the matrix. Clusters of related improvements were found at the north and south ends of the corridor, with potential intersection improvements in the middle portions of the corridor. Mapping of crash data along the corridor in relation to these locations was also reviewed. High occurrences of hit-fixed-object crashes are consistent with narrow lanes along the corridor, and there was a high occurrence of head-on crashes at many horizontal curves throughout the study area.

Mr. Petulla also mentioned the Future Conditions analysis which the team has been developing. Historic growth trends were reviewed and revealed that more growth has been happening along the portions of Route 28 that have been upgraded to four lanes (1% growth rates) than in portions that are two lanes ($(1 / 4-1 / 2 \%)$. Working with SPC, the Study Team determined a $1 / 2 \%$ growth rate would be utilized to consider future traffic projections. Mr. Petulla concluded that, based on the overall future conditions analysis, the existing corridor does not appear to have any major capacity or congestion issues. Only one area showed a degraded level of service in the future projections - the
area between Routes 1028 and 1035, just north of Kittanning. Most concerns identified were related to corridor operations and safety.

Melissa Thomas, Study Highway Lead, reviewed the draft improvement concepts developed to address the concerns identified along the corridor.

- Concern ID \#6: Sloan Hill Road - Sloan Hill Road intersects Route 28 at a skew, which causes sight distance concerns. The draft improvement concept improves the turning radius and realigns the intersection to be more perpendicular to Route 28 . The concept would also include wider shoulders and a grade adjustment.
- Concern ID \#8: Near Oscar Road - This improvement concept would adjust the vertical grade over $3 / 4$ mile, which includes three crest curves and three sag curves. The concept includes several cuts and fills to achieve a smoother profile. This area has a high occurrence of hit-fixed-object crashes.
o Tim Jablunovsky, PennDOT District 10, requested a profile be added for this concept.
- Concern ID \#14: Madison and Kohlersburg Roads - This draft concept would reconfigure and better define this intersection where the two side roads approach Route 28. The concept would channelize the intersection to direct traffic through the intersection. This improvement would better define the intersection, remove pavement and add green space. Improving this intersection could also help with access management along the corridor. The study team also considered a roundabout design at this location; however, after a high-level benefit/cost analysis it was determined not feasible.
- Concern ID \#25: Redbank Valley Trail Crossing - The trail currently crosses Route 28 at a steep diagonal in an area with vertical and horizontal curves. The improvement concept would realign the trail to run parallel to Route 28 between the roadway and the river to a perpendicular crossing at the intersection with Middle Run Road. Route 28 would be shifted slightly away from the river using roughly the same footprint of the current roadway and trail. Other countermeasures such as rectangular rapid flashing beacons, could also be used to alert drivers of the trail crossing and give trail users more visibility.
- Concern ID \#29: Mayport Road - Mayport Road intersects Route 28 at a severe skew, causing sight distance concerns. The improvement concept would relocate the intersection south to a more perpendicular intersection with Route 28. The remainder of Mayport Road would end in a cul-de-sac. The relocated roadway would require a cut in order for Mayport Road to meet Route 28 with an eight-percent grade.
- Concern ID \#33: Near Moore Road - The curve in this area is substandard, and the conceptual improvement would flatten the curve and reduce the grade.
- Concern ID \#35: Seldom Seen Road and Seneca Trail (T396) - This improvement concept would flatten the curve near this intersection.

Following the discussion of the draft improvement concepts, the Steering Committee offered the following comments and/or questions:

- Dave Tomaswick, PennDOT District 10, requested that the current posted speed limits be added to each of the draft improvement concept displays.
- Josh Spano, SPC, requested that the team be as specific as possible when listing additional low-cost improvements in the final report documents.
- Darin Alviano, Armstrong County, asked whether the speed limits would be made consistent throughout the corridor. The improvements would help make the roadway meet design criteria which will improve safety, but speed limits will still vary throughout the corridor.

Mr. Petulla then reviewed the draft outline for the final study report. The report will conclude with a miniTransportation Improvement Program, or mini-TIP. Mr. Petulla and the committee discussed how the mini-TIP will be organized and what will be included. Improvement concepts will be included in the mini-TIP, including those that have not been developed in detail as those discussed in the meeting today. As suggested by Amy Kessler, Northcentral RPO, all possible funding sources will be listed, as appropriate in the mini-TIP. For example, the trail improvement may qualify for funding through the Department of Conservation and Natural Resources. She also suggested organizing the mini-TIP according to planning district.

Ms. Kessler also asked whether the report can show the cost estimate for continuing the four-lane template for the length of the corridor and why incremental improvements were determined more effective. Mr. Petulla noted that the Existing Conditions Report included the cost estimate for the four-lane improvement, both from the 1994 study and updated with 2020 costs, and the final report can give details about why that improvement would not be costeffective.

Domenic D'Andrea (SPC) asked that the team provide some basic cost-benefit information on the conceptual improvements, and Mr. Alviano agreed that it would help show that these improvements provide the best 'bang for the buck'. The team will work to incorporate any safety improvement, crash reduction and travel time benefits as the concepts are further developed.

Mr. Jablunovsky asked whether the website will be updated when the report is complete. The Study Team agreed to share the final report on the website and with an email to the individuals who have subscribed to the study email update list. A press release will also be drafted to announce the completion of the study.

The Study Team and Steering Committee members agreed that each MPO/RPO will need to determine the best way to present the findings to their boards of directors, due to the lack of in-person meetings at this time. SPC and Study Team members will be available to attend meetings (virtual or in-person) as needed to discuss the final report.

Ryan Gordan, SPC, closed the discussion by noting that the report should focus on three inter-related pieces: the concern matrix, concern area mapping, and the mini-TIP. These items should be stylized to connect and summarize the study visually.

The meeting was adjourned at approximately 2:30 p.m. by thanking the committee for their input and discussion during the meeting and throughout the study. This will be the final Steering Committee meeting.

The following is a list of next steps discussed during the meeting:

Follow-up item	Responsible party	Anticipated completion	Actual Completion
Add current posted speed limits to all concept maps	McCormick Taylor	$6 / 26$	
Provide a profile for Concept \#8	McCormick Taylor	$6 / 26$	
Organize mini-TIP by county	McCormick Taylor	$6 / 26$	
Create matrix (or similar) of funding sources to show which improvements may qualify for each	McCormick Taylor	$6 / 26$	
Provide benefit-cost analysis for concepts	McCormick Taylor	$6 / 26$	
Stylize/coordinate the matrix, concerns/concept mapping, and Mini-TIP	McCormick Taylor	$6 / 26$	
Update website with final report findings	McCormick Taylor	$7 / 17$	

Prepared by:

McCORMICK TAYLOR, INC.

Copies:
Attendees
MT Project File

Attachments:
Updated Concerns Matrix
Concerns Area Map
Crash Location Maps
Draft Improvement Concept Displays
Draft Final Report Outline

APPENDIX B

 Public Comments Received

\begin{tabular}{|c|}
\hline \& \& Sitional \& \& \(|\)\begin{tabular}{l}
Featue \\
Tree \\
\hline
\end{tabular} \& \& \& \({ }_{\text {mouter }}\) \& mputer \& \& \multicolumn{9}{|l|}{} \& \& \multicolumn{3}{|l|}{} \& \multicolumn{14}{|l|}{} \& Do you have a photo of this area of concer
for us to consider? Please upload it here. \& \begin{tabular}{|l|l|}
Is there any other information you would \\
like us to know about the Route 28 \\
corridor?
\end{tabular} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \(\square\) \& \& \& \& \& \& \& \& \& Oair \& neekt \& athy som \& \({ }_{\text {No }}^{\text {No }}\) \& \& \& \(\qquad\) \& \[
\begin{array}{l|l}
\text { Lack of } \\
\text { bike lane }
\end{array}
\] \& \[
\begin{array}{|l|l}
\text { Lack of } \\
\text { protected } \\
\text { bike lane }
\end{array}
\] \& \[
\begin{array}{|l|}
\text { Travel lanes } \\
\text { are too } \\
\text { narrow }
\end{array}
\] \& \& venees \& \& Reater \& \[
\begin{aligned}
\& \text { Connectivity to } \\
\& \text { regional trail } \\
\& \text { system } \\
\& \hline
\end{aligned}
\] \& Aestretis \& fers \& \& \\
\hline 40.8858 \& -79347 \& \& 37400 \& poont \& \& 2/82020 \& 27276 \& \& Adda bile trathead \& \\
\hline 4.103 \& .793045 \& \& 37453 \& , \& \& 27102720 \& 27365 \& \& , bience \& \& \& \& \& \& \& \& \& \& \& \(\times\) \& \& \& \& \& \& \& \& \& \& \& \(\times\) \& \& \& \& \& \(\underbrace{\substack{\text { crasing foralis to } \\ \text { trals }}}_{\text {cose }}\) \& \& \\
\hline \& .79332 \& \& \({ }^{38053}\) \& \& \& 22127200 \& 27433 \& \& Needs safe way for bicycles to
cross 28 at fish basket crossing
on Redbank valley trail. \& \\
\hline \(4{ }^{4.100093}\) \& 7 \& \& 38023

38079 \& \& \& \& ${ }^{27438}$ \& Danger to trail users
and motorists due to
dangerous curve, the
hill, and the short sight
distance. Signage is
very inadequate. \& \&

\hline 4.1524 \& \% \& \& ${ }^{38073}$ \& \& \& 2/26/2020 \& 27743 \& \& \& \&

\hline 44.0132 \& 79.305 \& \& 38078 \& \& \& 22662020 \& 2192 \& \& \& \& \&

\hline [\& [8] \& \& 30078 \& \& \& \& 202 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& | The Redbank Valley |
| :--- |
| Trail could continue |
| through Brookville |
| towards the existing |
| but unimproved Five |
| Bridges Trail. The Five |
| Bridges Trail is part of |
| the Tricounty Rails to |
| Trails system and |
| includes the Clarion- |
| Little Toby Trail. |
| Finding a way under or |
| over I-80 is going to be |
| a key in connecting |
| these two trails and |
| should be explored as |
| part of this study. | \& \&

\hline
\end{tabular}

APPENDIX C

 Online Mapping Survey Questions
Route 28 Corridor Study Wiki-map Survey Questions

1. Select a point type and then place on map.
[Each point type receives a different list of concerns Q4-7]

- Traveling via a car
- Traveling via bike
- Traveling via walking
- Traveling via truck/freight vehicle

2. I use this area for: (Select all that apply)

- Local commuting (Less than 10 miles each way)
- Regional commuting (More than 10 miles each way)
- Business travel (Deliveries, moving freight, etc.)
- Accessing government services
- Accessing Redbank Valley Trail
- Accessing local schools
- Accessing stores, services, goods, healthcare
- Accessing recreational opportunities

3. How frequently do you use this facility?

- Daily
- Weekly
- Monthly

4. What about this location causes you concerns? [CARS]

- Pedestrian Safety
- Cyclist Safety
- Vehicle speeds
- Slow moving vehicles
- Congestion
- Stopping or turning vehicles
- Lack of connectivity
- Interstate access
- Roadway safety
- Drainage
- Parking
- Signal timing
- Roadway or bridge maintenance
- Sight Distance

5. What about this location causes you concerns? [BIKES]

- No shoulder

Route 28 Corridor Study Wiki-map Survey Questions

01.17.20

- Shoulder is too narrow
- Poor shoulder condition
- Debris
- Lack of bike lane
- Lack of protected bike lane
- Travel lanes are too narrow
- Drainage
- Vehicle speeds
- Roadway safety
- Proximity to large trucks/vehicles
- Connectivity to regional trail system
- Aesthetics

6. What about this location causes you concerns? [FREIGHT]

- Pedestrian Safety
- Cyclist Safety
- Vehicle speeds
- Roadway incline/grade
- No climbing lane on steep grade
- Travel lanes are too narrow
- Intersection too narrow to safely turn
- General congestion
- Stopping or turning vehicles
- Lack of connectivity
- Shoulder width/condition

7. What about this location causes you concerns? [WALKING]

- Sidewalk ends/no sidewalk
- Sidewalk condition
- Pedestrian safety/visibility
- Roadway safety
- No shoulder
- Shoulder condition
- Drainage
- Vehicle speeds
- Proximity to large trucks/vehicles
- Crosswalk
- Sidewalk not Americans with Disabilities Act (ADA) compliant
- Connectivity
- Aesthetics

8. Please explain your concern. (open-ended)

Route 28 Corridor Study Wiki-map Survey Questions

01.17.20
9. Do you have a photo of this area of concern for us to consider? Please upload it here.
10. Is there any other information you would like us to know about the Route 28 corridor? (openended)

Click submit to return to the map to add any additional problems or concerns.

APPENDIX D

 Public Concern Map

APPENDIX E

Stakeholder Meeting Minutes

Meeting:	Stakeholder Interview Meeting - Brookville	Date:	February 26, 2020
Location:	Jefferson County Conservation District	Time:	10:00am to 11:30am
Attendees:	See attached sign-in sheet		
Purpose:	The purpose of the meeting was to interview a variety of stakeholders for the Route 28 Corridor Study Project to obtain input from their local knowledge for consideration of proposed improvement within the study.		

Discussion: The format of the meeting followed an intial list of questioned provided to the stakeholders to guide the discussion. This list provided a general outline of project specific question regarding the use, operation and safety within the Route 28 Corridor. The following information provided a summary of the stakeholders input at the meeting and discussion:

- Traffic signals are not synchronized, and during an emergency detour situation, can cause traffic congestion. Presently, municipalities control them, but it would be good if a centralized authority made up of various stakeholders had operational control during emergencies.
- When traffic is detoured on I-80, some vehicles don't use the posted detour, and a lot of traffic is converging in Brookville at the intersection of SR 28 and US 322 near Sheetz. When I-80 is detoured, need coordination in Brookville due to traffic gridlock at that intersection.
- There is no parallel route for I-80 closures, people don't realize the detours and cell phones will just bring them right back into the detour. It was suggested to install message boards on parallel routes to control traffic on SR 28.
- Recently, a tanker had an accident on I-80, and traffic was detoured to SR 28 . Traffic was at a standstill for hours and hazardous material freight was coming off the interstate onto SR 28 which creates potential for accident or contamination that close to the Red Bank Creek. There is a need for a spill response team or plan along the corridor.During detour traffic, it is also extremely difficult for local emergency vehicles to get through the detour congestion since the shoulders on the corridor are so narrow. They cannot bypass the traffic.
- I-80 has no signage to show that SR 28 leads to Pittsburgh, and the Pittsburgh Airport.
- Many accidents occur from the Brookville Borough line to Snyder Road.
- Coder Road experiences accidents with commercial vehicles turning into Coder Road.
- There are landslides that occur north of Summerville.
- There are issues on Anderson Creek Road with commercial vehicles in the wintertime getting stuck on the top of the hill due to the steep grade.
- The Redbank Creek runs parallel to SR 28. The main concerns are with its proximity to the roadway, including potential for hazardous materials spills, flooding, ice jams, and narrow shoulders around the Summerville area.
- I-80/SR 322/SR 28 is a potential economic hub/area for development that would benefit from improved alignment and traffic conditions.
- Mendenhall Road is a safety concern due to sight distance/blind curve.
- Mayport Road is a safety concern as trucks have difficulty turning here due to the skew of the intersection, which is compounded by poor sight distance caused by the hill and the curvature of the roadway.
- Amy Kessler asked the question if there would be an increase in freight traffic due to the Shell Pennsylvania Petrochemicals Complex in Beaver County (cracker plant). The consensus was there would not be significant changes, though some minor manufacturing trips to process the plastic pellets could use the corridor.
- Since the turnpike tolls are high, and some trucks use 28 as a connector. This increases commuter and truck traffic on SR 28. Fuel tax is also too high. Many trucks will drop down to take 68 and pay the lower gas tax in Maryland.
- The issue with possible tolling of major highways and its implication on SR 28 was discussed.
- The Potters Mills project further east on US 322 was discussed. It was the consensus that when this project is complete more traffic that would use the Turnnike will instead be using SR 28 as an alternate route since it's a better connection.
- Jefferson County PennDOT maintenance stated that there are several crash clusters along SR 28 due to hills and curves. They also reiterated that congestion becomes an issue when traffic is detoured from I-80, but vehicles are following GPS instead of the posted detour. Noted a need for coordinated overhead messaging signs. Transporting a sign out from the

District office to tell people to stay on the detour route takes too long to be efficient at moving people before it becomes gridlock.

- There is inconsistency in speed limit and prevailing speed on SR 28 for the length of the corridor.
- The Redbank Valley Trail does not have good connections to Route 28. There is a lack of signage denoting where the trail can be accessed. The current trail crossing north New Bethlehem is perceived as particularly challenging.
- The Mayport curve was discussed as having sight distance concerns.
- The Baxter curve was discussed as having issues due to geometry and sight distance. Trucks also speed through Baxter. A possible improvement would be Baxter and Summerville widening and flattening the existing curves.
- It was mentioned that cell phone coverage along SR 28 is inconsistent, which could cause concerns for vehicle breakdowns and for those following GPS.
- Miller Transportation indicated they have daily deliveries on the corridor and speed is an issue for them. They would like to see a 4-lane roadway from Brookville to Kittanning as they are expecting deliveries to grow.
- The Conservation District indicated that water quality and spills were a major concern with the potential for increased traffic and the frequent use of Route 28 as a l-80 detour route.
- Amy Kessler asked about truck parking on the corridor. Generally the consensus was that truck parking presents little concern along the corridor. No one noted designated or unofficial locations of truck parking overnight on the corridor. The representative of the local freight community said that more shippers are providing overnight amenities at their facilities due to the new regulations. Haulers are also considering changes to their hours of operation to take shipments to more effectively meet the regulations.
- Hazen interchange was discussed as a possible future development project that could impact the traffic on SR 28.
- ATV crossings were noted along SR 28. ATV signs in the area around Dewey Road.
- In general, school bus stops along the corridor are hazardous, particularly where there is a 3-lane section with a passing lane. Cars will pass school buses even when they are supposed to stop. For example, south of Coder Hollow, a bus stop is located where the 3 -lane road begins. Not an ideal place for a bus stop as people are speeding to get to the 3 -lane road and pass slower moving vehicles.
- The guide rail is thought to be insufficient in Summerville and Baxter because you are so close to the water. It was noted that in recent years, a vehicle ran off the road and a woman drowned in the creek.
- In the summer, farming equipment using the road south of Summerville and throughout the corridor often slows traffic.
- The following tourism draws were discussed:
- Cooks Forest draws a lot of traffic from Pittsburgh
- Trout season
- Deer Season
- Poker Runs
- Peanut Butter Festival
- Historic Brookville
- Laurel Festival
- Several festivals in the summer
- Hazen Flea Market
- Autumn Leaf Festival
- Companies located along the corridor are doing their own shipping which increases the number of trucks on the road. Logging company employs independent drivers.

A list of action items was developed to summarize the stakeholders input and potential improvement areas within the study. The study team will further evaluate these stakeholder concern locations with our existing conditions, crash history, geometric conditions, public input, and operational conditions. The stakeholder action items to be considered are listed below:

Action Item List:

- Determine existing Variable Messaging Signing (VMS) that exists on I-80 and its proximity to the Route 28 Corridor.
- Further discuss areas where VMS placement along the corridor at strategic locations may provide helpful information during an I-80 emergency detour for travelers to consider prior to entering into congested areas to reduce gridlock. Also, this could serve as advanced warning for winter weather events or incidents along Route 28.
- Evaluate potential directional signing updates along I-80 to indicate that Route 28 connects to Pittsburgh and the Pittsburgh International Airport.
- Potential areas where emergency responders may have difficulty getting through congested areas during the use of Rt 28 as an I-80 detour route.
- Further investigate specific concerns noted by stakeholders at the following locations:
- Brookville Borough line to Snyder Road
- Route 28 near the Redbank Creek near Summerville
- Mendenhall Road sight distance
- Route 28 and Mayport Road sight distance/truck turning concerns with entrance skew
- Summerville and Baxter potential for deficient guide rail

The meeting was adjourned at approximately 11:15 a.m. by thanking the stakeholders for their feedback and time.

Prepared by:
McCORMICK TAYLOR, INC.
Copies:
Attendees
MT Project File

Attachments:

Meeting Sign-in Sheet
 BROOKVILLE
February 26, 2020

Meeting:	Stakeholder Interview Meeting - New Bethlehem	Date:	February 26, 2020
Location:	New Bethlehem Public Library Community Room	Time:	1:00pm to 2:30pm
Attendees:	See attached sign-in sheet		
Purpose:	The purpose of the meeting was to interview a variety of stakeholders for the Route 28 Corridor Study to obtain		
input from their local knowledge for consideration of proposed improvement within the study.			

Discussion: The format of the meeting followed an intial list of questioned provided to the stakeholders to guide the discussion. This list provided a general outline of project specific question regarding the use, operation and safety within the Route 28 Corridor. The following information provided a summary of the stakeholders input at the meeting and discussion:

- The pedestrian crossing at Redbank Valley School is challenging with fast-moving vehicles nearby and many pedestrians. Vehicles typically park across SR 28 from the school and children cross SR 28 to get to their parents. They would like to evaluate a sign and/or traffic signal.
- The trail crossing is under PUC authority because it's a railbanked corridor. The crossing is particularly difficult and would benefit from signing in advance of and at the crossing, flashing lights, as well as a realignment of the trail so that it is perpendicular to the road and shortened, instead of crossing at a diagonal. The painted crosswalk across SR 28 was removed due to driver complaints, but the location has anecdotally had numerous accidents with folks driving off the road.
- The question was also posed if the restrictions on Tourist Oriented Directional Signing (TODS) could be lessened. The town would benefit from markers for economic development of businesses on trail, including B\&B's, as well as for parking areas.
- There may be trail counts done by the Redbank Valley Trail Association, though most counters have been damaged or stolen. Study team will look into obtaining previous counts taken of the trail users.
- The Mahoning Township supervisors mentioned a study that was done to look at locations for the trail or roadway in front of Nolf Chrysler, that would side cut the hill, flatten the trail past Chrysler but there was a wetland issue that stopped the study moving forward. Wetland mitigation was mentioned as a potential solution for the project. Study team will look into obtaining this information.
- Redbank Valley High School has issues with pedestrians crossing the street during the school dismissal hour at 3:10pm. Parents park in the Subway and Chiropractor parking lots and then jump onto Route 28. They said there is plenty of parking in the back of the school, but that parents and students don't want to use it. They have crossing guards but are curious if a traffic signal could help. It's primarily drivers, with some walking students crossing to walk down the trail to get back to their homes. Dr. Mastillo, superintendent of the Redbank Valley School District, was supposed to attend but could not at the last minute, study team will follow up with him.
- It was discussed that congestion becomes an issue when traffic is detoured from I-80 but vehicles are following GPS instead of the posted detour.
- There is a operational concern at the SR $28 /$ SR 66 intersection when trying to detour trucks due to geometric constraints. Trucks frequently hit the building and traffic signals at this location. The pole has been hit 8 times since the pedestrian ramp was installed. One day there was a bollard, but it kept getting hit and never came back. Cars also regularly pull beyond the stop bar and this creates congestion because trucks cannot navigate the turn with them there.
- Generally, the PSP has issues along SR 28 due to hills, climbing lanes (or lack of) needed at Hogback Hill and Orchardville Hill toward Exxon Station to Baum Pump Station. Other issues include snow, trucks that get diverted from I80, and speeding along the corridor.
- PSP said speed along Route 28 is a safety concern, but there is not a high rate of crashes in this area of Route 28 if you compare it to the lower portion of Route 28.
- There is a choke point at the bridge in New Bethlehem over Redbank Creek which causes congestion. Any major crash, spill, or slide would wreak havoc on the transportation system because there is no way around it. The transportation system is very limited in this area.
- It was indicated that there should be improvements to the crosswalks throughout New Bethlehem and Hawthorn.
- Speed is an issue at the mini mall. The speed limit is 35 mph in one direction and 25 mph in the other. PennDOT mentioned that it should not be signed differently in opposing directions, and that the roadway needs to meet certain requirements to be posted at 25 mph , including $85^{\text {th }}$ percentile speed and residential density.
- There was another speed limit difference noted in Hawthorn, where it is 45 mph in one direction and 35 mph in the other. PennDOT again stated that it should not be signed as such.
- Along SR 28 from Kittanning, there are issues with erosion which is causing the guiderail to shift.
- Generally, the Redbank Creek runs along SR 28 too close to the road (horizontally and vertically) and during the winter months, ice jams cause issues over the roadway, including flooding. It was suggested that the stream needs to be dredged in some areas to remove debris. The Leisure Run flood is still being cleaned up.
- The 3-lane roadway ends at the Mahoning Creek Bridge.
- There is a 55/40/55 speed differential through difficult geometry which makes traveling through Distant difficult.
- A northbound turning lane begins where a passing lane ends at the crest of a hill at Calhoun School Road. This poses a safety concern for potential rear end and head on collisions. People think this is an extension of the passing lane and use it for passing.
- There is an ice cream shop directly adjacent to SR 28 that is very popular near Distant. Distant Dairy and Dollar General have a lot of traffic and generate pedestrians close to the roadway. Dollar General is noted as a difficultarea to pull out of due to blind curves. Some places in Distant lack sidewalks.
- There are rockslide and hill side erosion issues along the corridor which occur frequently and in many places.
- The intersection of SR 28 and SR 536 Mayport Road has deficient sight distance.
- Smucker's currently has access issues to their plant that could be addressed with a future project. In particular, the intersection of Wood and Penn poses an issue for trucks driving to Smucker's having to use local roads. Trucks get trapped and end up driving into people's yards and break the curb and sidewalk. They would like to see Smucker's have their own access road, but a study was done in the past and there was possibly a problem with sight distance that could not be overcome. Ms. Amato was involved with the Economic Development Commission with this study. The study team will obtain a copy.
- New Bethlehem Borough provided a list of issues that are included as an attachment to this summary.
- The passing lane at Distant is not long enough coming up the hill, then you hit 40 mph , and SR 1004 is a quick turn with poor deceleration length.
- Upper/Lower Hayes at 28, and South Main Street could use a turn lane to separate turning vehicles from the general through traffic.
- Parking near the Sunoco/Key Beverage on Broad Street causes issues for traffic traveling WB turning into Sunoco. It could use a turn lane or restrict some parking closer to the area to provide room to turn into these businesses.
- There is acid mine drainage from Summerville to Moore Road in Corsica.
- On the 3 lane sections of SR 28 , it has been noticed by PSP that vehicles in the opposing outermost lane do not stop for school buses when they legally are required to.
- There are sight distance issues at the PennDOT maintenance/school bus turnaround location at the Jefferson County line.
- The sidewalks in Distant and South Bethlehem are in poor condition.
- It was suggested that turning lanesare needed at Sloan Hill Road and Calhoun Crest.
- There are little to no issues with freight loading in the downtown New Bethlehem area. There aren't many places that freight has to stop.
- The following tourism draws were discussed:
- Redbank Valley Trail
- Redbank Creek during trout season
- Bed and Breakfast locations
- Local campgrounds
- The County Fair at the end of July is a large traffic generator
- Poker Runs (ATV event)
- Peanut Butter Festival
- Friday night football games
- Deer season
- I-80/SR 28 in Brookville is a route to the Pittsburgh International Airport

The meeting was adjourned at approximately 1:15 p.m. by thanking the stakeholders for their feedback and time. A list of action items was developed to summarize the stakeholders input and potential improvement areas within the study. The study team will further evaluate these stakeholder concern locations with our existing conditions, crash history, geometric conditions, public input, and operational conditions. The stakeholder action items to be considered are listed below:

Action Item List:

- Consider potential for climbing lanes at Hogback Hill and Orchardville Hill toward Exxon Station to Baum Pump Station.
- Consider potential/need for alternate route to bypass bridge in New Bethlehem over Redbank Creek during an incident.
- Consider designated crosswalk improvements for consistent and safe pedestrian access across Route 28.
- Obtain trail counts and previous studies on crossing locations performed by the Redbank Valley Trail Assocation.
- Obtain Smucker's access study for consideration.
- Connect with school superintendent separately to note New Bethlehem School District's concerns along the corridor.
- Document areas of inconsistent speed limits along Route 28 and in certain area in NB and SB directions.
- Investigate potential narrow shoulders or flooding issues where Redbank Creek is close to Route 28.
- Consider potential turning lanes at Upper/Lower Hayes Road and at South Main Street.
- Consider pedestrian access and sidewalks in Distant and South Bethlehem.
- Consider improvements at Sloan Hill Road and Calhoun School Road to improve sight distance and safety.
- Further investigate specific concerns noted by stakeholders at the following locations:
- Pedestrian crossing at Redbank Valley High School.
- Redbank Trail crossing at Route 28.
- SR 28/SR 66 intersection geometric improvements for trucks to navigate the intersection.
- Calhoun School Road where the northbound passing lane ends at the crest of a hill and stops in a turning lane.
- Pedestrian connections and sight distance at Distant Dairy and Dollar General.
- SR 28 and SR 536 Mayport Road and potential improvements to address deficient sight distance.
- Hogback Hill potential lengthening of passing lane coming up into Distant.
- Jefferson County line PennDOT maintenance/school bus turnaround location sight distance issues.

Prepared by:
McCORMICK TAYLOR, INC.

Copies:
Attendees
MT Project File

Attachments:

Meeting Sign-in Sheet
Borough of New Bethlehem Identified Areas of Concern
Photos of Meeting

Ruve atars	Cic		
Ryan Gordon	spe		
Tom Serde	Mohoun JTwp	tonserdle e yaho	814-319-5600
Terry Beamer	Hawthan		
heen Blalin	Mahoving twp		814-221-9819
Whalinda Li4tre	Hawthorn Boro.		814-319-3401
ERIC SIMRO	Pspketomening	ESTMROC PA. GOL	724-543-2011
Tave Temaiwice	Panndot Pisterct 10	Domuswicke PA. 60 V	7243572845
Rrist' Ancto	Clarion Co. Plamina		814-226-4000, $\times 2800$
Reith Schneectergest	Makhoing Tup Arms		$8,4-229-5441$
Gurdon Borraus	New Bethlehan Moyor	moyor eNarsethletwas	$814-275-2003$
Jool Climpr.	Corrin Cand, Pmpor	joliypoopa ga	814 226 -8200
Sandy mateu	Neen Bath Row bil	scunater (lagmail.cons	814-275-1718
Ashley Tracy, Tost Sp	-	lock, Wary Eberha	+1 Clopet To

FROM RITTANNING TO I-80

Meeting:	Stakeholder Interview Meeting - Kittanning	Date:	February 26, 2020
Location:	The Belmont Complex	Time:	$4: 00 \mathrm{pm}$ to 5:30pm
Attendees:	See attached sign-in sheet		
Purpose:	The purpose of the meeting was to interview a variety of stakeholders for the Route 28 Corridor Study Project.		

Discussion: The following outlines the highlights of the discussion:

- The concerns expressed by the EMS/Ambulance representative were that the hills and geometry of SR 28 present a challenge in getting patients to the most appropriate local hospital. The Armstrong Hospital has advanced cardiac technologies that other local hospitals do not, and many times flights are needed to get patients to the Armstrong Hospital.
- Truck traffic presents an operational and safety concern due to speed differentials between cars and trucks. Many times, vehicles pass slow moving trucks in a no passing zone. Suggested a need for additional truck climbing lanes near Orchardville.
- Spacious Corners / Sloan Hill Road has poor sight distance due to the hill and curve.
- At the top of Hogback Hill at the truck weigh station, sight distance is poor, and trucks are slowing down, stopping, pulling over in this location. Trucks also sometimes don't stop as directed and roll through the brake check area and pull out in front of cars.
- Goheenville - speeding issues are noted. An improved project in this area is currently being designed by PennDOT.
- The concerns expressed by the local trucking company, who delivers heating oil and other seasonal products, were that houses are too close to the road in many locations. Other areas of concern were brake check stops, the Baum Pump Station, and the "tickle turn" by Horse Trader just north of SR 85 that has a sharp turn that is difficult for trucks to maneuver at high speeds. There was a recent project that fixed some geometric issues but the project limits did not address that turn. They would like to see the improvements continued to address the sharp turn.
- The crosswalk at Fish Basket needs to be straight across the road. (This is the New Bethlehem crossing of the Redbank Valley Trail).
- Speeding is a concern at the 15 mph curve in South Bethlehem. Trucks frequently overtrack and sometimes roll over.
- The discussion regarding the traffic models incorporating drawing additional freight traffic from other major adjacent highways such as I-79, I-80, Route 8, and US 119 was discussed. It was determined that the tools to address this quantitatively are limited, so this would be considered qualitatively..
- There are sight distance and access concerns coming out of Oscar Road.
- There is significant congestion in the afternoon in New Bethlehem. Better coordination of the two signals in New Bethlehem was suggested.
- There is a crash history in Distant due to the narrow roadway/shoulders and the stream located so close to the road, north of Wadding Road to Redding Road.
- There is an active slide at the Pine Creek Bridge.
- Other general concerns included narrow shoulders, lack of truck lanes, trout and deer season congestion, Sloan Hill Road blind curve with buses pulling out, sight distance at Lower Hays to Upper Hays Run, and SR 28 near SR 1035 Oscar Rd needs truck lanes and wider shoulders.
- The following tourism draws were discussed:
o Port Armstrong Folk Fest
o Armstrong Festival
o Arts on Allegheny
o ATV events
o Cooks Forest
o Autumn Leaf Festival
o Peanut Butter Festival
o Proposed ATV Facilities - large scale improvements, Poker Runs, Scrubgrass Run, a big draw
The meeting was adjourned at approximately 5:15 p.m. by thanking the stakeholders for their feedback and time. A list of action items was developed to summarize the stakeholders input and potential improvement areas within the study. The study team will further evaluate these stakeholder concern locations with our existing conditions, crash history, geometric conditions, public input, and operational conditions. The stakeholder action items to be considered are listed below:

Action Item List:

- Consider EMS provider concerns with Route 28 geometry and access to Armstrong Hospital.
- Consider local freight provider concerns with Route 28.
- Consider a need for additional truck climbing lanes near Orchardville.
- Consider better coordination of the two signals through New Bethlehem.
- Further investigate specific concerns noted by stakeholders at the following locations:
o Sloan Hill Road sight distance.
o Hogback Hill in general at the truck weigh station.
o Route 28 at the Redbank Trail concerns for pedestrians crossing.
o 15mph curve south of New Bethlehem where trucks frequently overtrack and sometimes roll over.
o Oscar Road sight distance and truck access concerns.
o Lower Hayes Run turning vehicle provisions.
o Discuss with School District separately their concerns along the corridor.
o Coordinate with Armstrong County on planned and potential future developments.

Prepared by:

McCORMICK TAYLOR, INC.

Copies:
Attendees
MT Project File

Attachments:

Meeting Sign-in Sheet
Photos of Meeting
Stakeholder Outreach
INTERVIEW INVITATION SIGN IN SHEET
KITTANNING
February 26, 2020

NAME	ORGANIZATION	EmAIL	PHONE
			$724<545-7142$
Allie Penci	Hrustrona (u. Plannincar	arpenca@co.armstong.	Us 724-548-3734
Carmer Suhnsin	$\text { Pluvinuy a } D_{\text {evolj, inewt }}$		124.548 .3221
Tomatacicil	Pennuo Driacta 16	DTomaswicke Pa ho	7243572845^{\prime}
BML C loak	Poggs Typ finerap	WCST87 @c/atho.m	7249546791
vide Pozzuto	kstronschambe	Ukic	24:224-3
Mille coonl	ARM. W. Ecjunat DEV	why Cusa	07 U: 724348
steven Bakka	Kottanning Tupp VFD	stelibakor yahco.	724-664-3995
Keith Bowscic	Beacligaus Ex.	Meithencolisensice	724-525-3562
Audy Rradic	Bradigan's Iac	andy e bradiyausica	$734-505-8956$
Jaso- O-to	ACMH	jason. ortone And.ary	\$ 412.491 .9256
stin Nold.	Arm. Co. Econ Dev	irnoideroco armstrong pa	us $724-548-1500$
Ryan Gordon, Aswley Tro	hau, kari shedlock, W	Eberhart (Proiect Ted	

APPENDIX F Existing Conditions Memorandum

EXISTING CONDITIONS MEMO
 June 2020

Prepared by: McGORMICK TAYLOR

Prepared for.

Table of Contents

Contents

Table of Contents 2
List of Exhibits 3
Appendices 4
Study Area 5
Transportation and Land Use Context 5
Geography 5
Steering Committee \& Study Goals 7
Previous Studies 8
Previous and Related Studies 8
Traffic Analysis 12
Existing Traffic Conditions 12
Counted Intersections 14
Traffic Analysis Methodology 18
Synchro and Intersection Control Assumptions 18
Highway Capacity Analysis Assumptions 26
Traffic Analysis Results 27
Speed and Travel Times 29
Grades 33
Detour Conditions 35
Streetlight Data 40
Safety Analysis 47
Methodology 47
Crash History Analysis 47
Crash Rate Comparison 51
PennDOT Safety Screening 52
Safety Summary 52
Multimodal Facilities 61
Distant 61
South Bethlehem 61
New Bethlehem 61
Library and Redbank Valley High School 62
Redbank Valley Trail Crossing 62
Hawthorn 63
Geometric Considerations 71
Design Criteria 71
Typical Sections 71
Horizontal and Vertical Geometry 71
Community Outreach 76
Stakeholder Outreach 76
Public Survey 77
Field Observations 82
Field View 82
Conclusion 84

List of Exhibits

Exhibit 1 - Study Area Limits 6
Exhibit 2 - Previous Studies Areas of Concern 10
Exhibit 3 - Estimated Cost Breakdown for 1994 and 2020 11
Exhibit 4 - Average Daily Traffic Data 12
Exhibit 5 - Route 28 Permanent Count Station Hourly Traffic Counts 12
Exhibit 6 - PennDOT Count Stations 13
Exhibit 7 - Counted Intersections 14
Exhibit 8 - Turning Movement Count Locations 15
Exhibit 9 - Peak Hour Volumes and Truck Percentages (2019 AM Peak) 16
Exhibit 10 - Peak Hour Volumes and Truck Percentages (2019 PM Peak) 17
Exhibit 11 - Intersection Characteristics 19
Exhibit 12 - Level of Service Criteria for Signalized and Unsignalized Intersections 19
Exhibit 13 - Intersection Level of Service (2019 AM) 20
Exhibit 14 - Intersection Level of Service (2019 PM) 23
Exhibit 15 - Level of Service Thresholds for Interstates 26
Exhibit 16 - Level of Service Thresholds for Twolane Highways 26
Exhibit 17 - Highway Capacity Analysis Results for General Segments 27
Exhibit 18 - Highway Capacity Analysis Results for Climbing Lanes 28
Exhibit 19 - Speed Limits 30
Exhibit 20 - Maximum Observed Speeds All Vehicles 31
Exhibit 21 - Speed Differential between Cars and Trucks 32
Exhibit 22 - Grades and Climbing Lanes 34
Exhibit 23 - Route 28 Posted Detour Routes 36
Exhibit 24 - I-80 Posted Detour Routes 37
Exhibit 25 - Southbound Route 28 Speed Effects during l-80 Closure (Near US 322) 38
Exhibit 26 - Southbound Route 28 Speed Effects during I-80 Closure (Near New Bethlehem) 38
Exhibit 27 - Southbound Route 28 Speed Effects during I-80 Closure (Near Kittanning) 39
Exhibit 28 - Trip Characteristics 40
Exhibit 29 - Home Grids for Route 28 Corridor Travelers 41
Exhibit 30 - Origin-Destination Heat Map (Weekdays) 41
Exhibit 31 - Redbank Valley Trail (New Bethlehem) User Demographics 42
Exhibit 32 - Redbank Valley Trail (New Bethlehem) Trip Characteristics 43
Exhibit 33 - Distribution of Traffic Passing a Point On Route 28 near South Main St Brookville 44
Exhibit 34 - Distribution of Traffic Passing a Point On Route 28 near South Main St Brookville 45
Exhibit 35 - Top Routes from Pittsburgh to Brookville 46
Exhibit 36 - Geographic Context of Overall Crash Frequency 47
Exhibit 37 - Crashes by Context Area 48
Exhibit 38 - Crash Location Breakdown 49
Exhibit 39 - Crash Type Breakdown 49
Exhibit 40 - Crash Severity Breakdown 49
Exhibit 41 - Crash Time of Day Breakdown 50
Exhibit 42 - Crash Weather Condition Breakdown 50
Exhibit 43 - Crash Seasonality Breakdown 50
Exhibit 44 - Crash Illumination Type Breakdown 50
Exhibit 45 - Crash History Comparison (Fatalities) 53
Exhibit 46 - Crash History Comparison (Hit Fixed Object) 54
Exhibit 47 - Crash History Collision Type Analysis (Insets 1) 55
Exhibit 48 - Crash History Collision Type Analysis (Insets 2) 56
Exhibit 49 - Crash History Collision Type Analysis (Insets 3) 57
Exhibit 50 - Crashes Involving a Pedestrian 58
Exhibit 51 - Crashes Involving a School Bus 59
Exhibit 52 - PennDOT Safety Screening Segments 60
Exhibit 53 - Redbank Valley Trail System 64
Exhibit 54 - Multimodal Facilities (Distant) 65
Exhibit 55 - Multimodal Facilities (South Bethlehem) 66
Exhibit 56 - Multimodal Facilities (New Bethlehem) 67
Exhibit 57 - Multimodal Facilities (New Bethlehem Plaza and High School Area) 68
Exhibit 58 - Multimodal Facilities (Redbank Valley Trail Crossing of Route 28) 69
Exhibit 59 - Multimodal Facilities (Hawthorn) 70
Exhibit 60 - Design Chart Horizontal Radii 71
Exhibit 61 - Areas with Horizontal Radii Less Than Current Recommended Design Value 72
Exhibit 62 - Areas of Horizontal Deficiency 73
Exhibit 63 - Area with Vertical Grades Exceeding Maximum Design Grade 74
Exhibit 64 - Vertical Deficiency 75
Exhibit 65 - Stakeholder Concern Locations 78
Exhibit 66 - Public Survey Concern Locations 79
Exhibit 67 - Summary of Public Survey Concern by Mode 80
Exhibit 68 - Field Observation Locations 83
Appendices
Appendix A - Cost Estimate
Appendix B - Capacity Analysis
Appendix C - Design CriteriaAppendix D - Stakeholder Meeting MinutesAppendix E - Survey SummaryAppendix F - Field Notes

Study Area

Transportation and Land Use Context

The Route 28 Corridor Study focus area encompasses an approximately 40-mile length of Route 28 from the US 422 interchange near Kittanning to the south to the l-80 interchange near Brookville in the north (ExHIBIT 1). The land use surrounding the corridor is primarily agricultural, low-density residential, and undeveloped forest. Communities developed along Route 28 in support of the industries of lumber, mining, farming, and manufacturing in the early 1800's and 1900's, including Kittanning (est. 1803, pop. 3795), New Bethlehem (est. 1853, pop. 929), Hawthorn (est. 1916, pop. 466), Summerville (est. 1887, pop. 528), Brookville (est. 1830, pop. 3933) and villages such as Distant and Orchardville. Many of these industries continue to operate along the corridor to this day, though at reduced capacity similar to the trends of the region and nation for similar types of roadway and demographics. Freight operators in the corridor typically deliver heating oil, timber, coal, aggregates, and mechanical equipment.
Route 28 was designated from Pittsburgh to Kittanning in 1927. In the highway expansion era of the 1960's, the route was widened from Pittsburgh to Kittanning to a primarily four-lane divided expressway. Early studies evaluated widening of the remainder of Route 28 from Kittanning to Interstate 80. Over the years, a series of improvements to the existing two-lane template have been made within the study corridor to improve operations and safety and regional connectivity.
The corridor today serves many purposes. It serves short trips for residents and local agriculture and business owners, and longer regional trips for Pittsburgh-bound commuters and freight operators. Taking New Bethlehem as the approximate middle point of the corridor, it takes approximately 1 hour 10 minutes to drive to Pittsburgh along Route 28. The corridor between Pittsburgh and I-80 provides a critical temporary detour of I-80 traffic during fairly frequent traffic incidents on I-80.
The surrounding land and environmental features draw outdoor enthusiasts, including hunting, fishing, camping, and ATV riding. ATV organizations on the corridor frequently host Runs, which draw thousands of ATVs to the valley and its trails. Redbank
 Creek offers trout fishing and kayaking activities. The creek runs roughly parallel to the corridor north of New Bethlehem, visibly close to the roadway in some areas where it winds through Summerville toward Brookville. Businesses are frequently located directly adjacent to the corridor. Route 28 runs through the Central Business District of New Bethlehem and the campus of Redbank Valley High School. There is an at-grade trail crossing of the Redbank Valley Trail in New Bethlehem. The last train ran on the rail corridor in 2007, when it was railbanked and transformed into the Redbank Valley Trail, a 51-mile non-motorized trail that connects from Brookville in the north, westward to the Armstrong Trail.

Geography

Route 28 runs through unique geography that could roughly be broken down into three sections. The southern section from approximately Kittanning to New Bethlehem hosts mountainous terrain adjoining steep slopes with long grades exceeding 9% in some areas and winding turns. Truck climbing lanes and brake check areas are found throughout this portion of the corridor. In the middle section of the corridor from approximately New Bethlehem to Summerville, the mountains begin to break to flatter, rolling hills with passing zones and clearer lines of sight. The northern section of the corridor from Summerville to US 322 has rolling terrain, but winds horizontally around the mountain and generally follows the Redbank Creek. The segment from US 322 to I-80 is built-up with commercial businesses and densely spaced driveways, travel service amenities, signals, and four lanes of traffic with turning lanes.

Exhibit 1 - Study Area Limits

Steering Committee \& Study Goals

Steering Committee Members Southwestern Pennsylvania Commission
 North Central RPO
 Northwest RPO
 Armstrong County
 Clarion County
 Jefferson County
 PennDOT District 10

The purpose of this study is to understand and address the present and future needs of the Route 28 corridor, from an operational and safety perspective for all modes of travel to support current and future business development and enhance the quality of life for the residents along the corridor. A Steering Committee was established to guide the study and make decisions as it progressed. The goals of the study were developed with the Steering Committee. These goals were used to guide conversations with the public and corridor stakeholders to uncover specific areas of concern or opportunity for improvements. These goals will also be used to determine the effectiveness of conceptual improvement alternatives.

Route 28 Study Corridor Goals:

- Improve Safety - improve safety for all modes of transportation
o Improve Security - improve security by maintaining critical assets such as bridges and reducing emergency response times
- Support Regional Economic Development - promote the corridor as a regional trade route between I-80 and Pittsburgh, in addition to attracting new businesses
o Promote Tourism - promote tourism to historic locations, trails, and outdoors activities
- Facilitate Regional Connectivity - facilitate connections to regional routes
o Accommodate Multimodal Use - improve existing and plan for new multimodal connections to nonmotorized facilities
o Accommodate Freight Movement - facilitate access for freight and trucks
- Improve Operations - improve operations and reduce congestion
o Improve Resiliency / Reliability - provide reliable travel times
o Focus on Asset Preservation - maintain a good state of repair of assets such as bridges, guide rail, signs, drainage, slopes, lighting, and pavement
 structure
- Minimize Environmental Impacts - minimize impacts to the environment and community
o Improve Quality of Life - improve quality of life by providing access to a safe and efficient transportation system and public resources
o Gain Community Buy-in/Satisfaction - promote projects that have broad community support and meet the study's goals, and minimize impacts to the traveling public during construction

Previous Studies

Previous and Related Studies

The Route 28 Corridor is also known as the Alexander H. Lindsay Memorial Highway or the Allegheny Valley Expressway. This section of the Route 28 Corridor from Kittanning to Brookville, mile marker 40 to mile marker 80 of the 98 mile corridor has been the subject or mentioned in a number of studies over the past 30 years. The relevant previous studies were reviewed for their findings to assist in evaluating the corridor to consider advancing with future conceptual improvements with this study (ExHIBIT 2).

The studies consulted included:

- State Route 28 Feasibility Study Kittanning to I-80 Armstrong, Clarion \& Jefferson Counties, Pennsylvania. Michael Baker, Int'l. June 1994.
- Armstrong County Comprehensive Plan. Mullin \& Lonergan Associates Incorporated, 2005.
- Clarion County Comprehensive Plan. Clarion County Planning Commission \& Graney, Grossman, Ray and Associates, 2004.
- Jefferson County Comprehensive Plan Update - 2018. The EADS Group, July 2018.
- North Central PA RPO Long Range Transportation Plan. North Central PA Rural Planning Organization, July 2017.
- North Central PA Regional Safety Study. McCormick Taylor, March 2012.
- Northwest PA Commission 2015-2040 Long Range Transportation Plan. Northwest PA Commission, June 2015.
- Redbank Valley Trail Feasibility Study. Mackin Engineering Company, June 2011.
- Smart Moves for a Changing Region. Southwestern Pennsylvania Commission, 2019.
- Southwestern Pennsylvania Regional Freight Plan. Resource System Group Inc. (RSG), French Engineering, Whitman, Requardt, and Associates, LLP (WRA), 2016.

The most recent previous study was the State Route 28 Feasibility Study Kittanning to I-80 Armstrong, Clarion \& Jefferson Counties, Pennsylvania. Michael Baker, Int'l., June 1994. This feasibility study examined the section of Route 28 between Kittanning, PA and Interstate 80. The initial recommendation based on a Preliminary Location Study for State Route 28 completed by The Pennsylvania Department of Transportation in the 1960's was to extend a 4 lane, limited access facility from Aspinwall to l-80. A portion of this recommendation was built in the 1970s and 1980s terminating in Kittanning, PA. This study examined the feasibility of continuing the 4lane template from Kittanning to I-80. As part of the study a conceptual cost estimate was completed to complete this widening. This cost estimate was examined and escalated to 2020 dollars (ExHIBIT 3). While this estimate accounts for the construction cost, it does not take into account more stringent modern environmental regulations. In particular, regulations related to stormwater management volume and rate management and water quality treatment and the mitigation of protected environmental features such as streams and wetlands
located throughout the corridor. Accounting of this design, permitting, environmental and community impacts, construction, and future maintenance, presents potentially hidden costs which would place a further strain on initial design and construction costs and future PennDOT maintenance of the permitted stormwater and mitigation features.

The Southwestern Pennsylvania Regional Freight Plan provided insight into the freight movement within the region. Most of the report focused on the I-80 \& I-79 corridors. There were three potential future project recommendations specifically related to the RT 28 Corridor.

- RT 28 Truck Climbing Lane
- RT 28 Geometry Improvements
- RT 28 North Lane Expansion to County Line

The County Comprehensive Plans were reviewed for recommendations and future goals of each county. Some of the specific local concerns related to this study from the individual Comprehensive Plans include:

Armstrong County:

- Maintaining the 372 state owned bridges
- Public opinion favors improved public transportation
- Longer than state average commuting times

Clarion County:

- Desire to retain young workers in the area
- Public opinion favors improved public transportation
- Public opinion favors recreational trails in the area
- Some interchange areas with commercial development are seeing some traffic congestion. Route 68 between PA-66 to I-80

Jefferson County:

- No major North/South routes, lack of limited access highways in the area.
- Limited public transportation available in Jefferson County
- Freight rail lines operate in the County but no rail passenger service

Exhibit 2 - Previous Studies Areas of Concern

Exhibit 3 - Estimated Cost Breakdown for 1994 and 2020

	Michael Baker's 1994 Study		McCormick Taylor's 2020 Study Update	
Item	$\begin{gathered} \text { Cost/Mile } \\ (1994) \end{gathered}$	$\begin{aligned} & 35 \text { Miles } \\ & (1994) \end{aligned}$	Cost/Mile (2020)	$\begin{aligned} & 35 \text { Miles } \\ & \text { (2020) } \end{aligned}$
Clearing and Grubbing	\$150,000	\$5,250,000	\$150,000	\$5,250,000
Roadway Excavation	\$3,000,000	\$105,000,000	\$3,567,000	\$124,845,000
Pavement, Shoulders, Curbs	\$3,200,000	\$112,000,000	\$4,460,000	\$156,100,000
Drainage	\$900,000	\$31,500,000	\$1,200,000	\$42,000,000
Guiderail and Barrier	\$70,000	\$2,450,000	\$132,000	\$4,620,000
Right-of-Way Fence	\$110,000	\$3,850,000	\$158,400	\$5,544,000
Landscaping	\$130,000	\$4,550,000	\$217,545	\$7,614,075
Temporary Traffic Control	\$210,000	\$7,350,000	\$351,418	\$12,299,630
Utility Relocations	\$200,000	\$7,000,000	\$334,684	\$11,713,940
Bridges, Box and Arch Culverts	\$3,900,000	\$136,500,000	\$6,526,331	\$228,421,585
Signalization and Signing	\$30,000	\$1,050,000	\$50,203	\$1,757,105
Pavement Markings and Delineators	\$20,000	\$700,000	\$33,469	\$1,171,415
Erosion and Sedimentation Control	\$250,000	\$8,750,000	\$418,355	\$14,642,425
Miscellaneous	\$400,000	\$14,000,000	\$669,368	\$23,427,880
Mobilization/Field Office	\$450,000	\$15,750,000	\$753,039	\$26,356,365
Stormwater Management	-	-	\$418,355	\$14,642,425
Subtotal		\$455,700,000		\$680,405,845
Design Engineering (10\%)		\$45,570,000		\$68,040,585
Construction Engineering (5\%)		\$22,785,000	(10\%)	\$68,040,585
Subtotal		\$524,055,000		\$816,487,014
Right-of-Way		\$26,202,750		\$40,824,351
TOTAL		\$550,257,750		\$857,311,365

See Appendix A for the Full Cost Estimate explanation.

Traffic Analysis

Existing Traffic Conditions

Traffic conditions vary along the approximately 40 -mile length of the Route 28 study corridor. The Average Daily Traffic (ADT) is a measure of the vehicle volume passing over a segment of roadway in a 24 -hour period. Average Daily Truck Traffic (ADTT) measures only truck traffic. The most recent ADT data collected between 2017 and 2019 shows ADTs ranging from 5,600 to 7,300 vehicles per day south of New Bethlehem to 4,100 to 4,600 vehicles per day north of New Bethlehem (ExHIBIT 4). Truck percentages are consistently around 15\%, which is fairly high compared to the statewide average.

Exhibit 5 shows the hourly distribution of traffic from the six count stations. Traffic during the PM peak hour is generally higher than the AM, with passenger cars showing the biggest variation in hourly volumes likely due to commuter and school traffic. Truck volumes are relatively consistent throughout the daylight hours, picking up in the early morning around 5 am and tapering off in the late afternoon around 4 pm . This may reflect daylight operations of resource extraction industries such as timber, coal, natural gas, fuel and heating oil, and equipment hauling. This data reflects observations on the corridor. This data is referenced from six (6) regularly counted PennDOT count stations along the Route 28 corridor (EXHIBIT 6).

Exhibit 4 - Average Daily Traffic Data

ID	Location	Year	ADT	ADTT	Truck \%
11706	Route 28 north of SR 85	2019	7,298	1,140	15.6
164	Route 28 south of Calhoun School Rd	2019	5,601	881	15.7
165	Route 28 south of South Bethlehem	2019	7,320	1,031	14.1
1342	Route 28 north of New Bethlehem	2017	7,025	821	11.7
31595	Route 28 near North Passing Zones	2018	4,147	624	15.0
32137	Route 28 north of Summerville	2018	4,635	731	15.8

Exhibit 5 - Route 28 Permanent Count Station Hourly Traffic Counts
Route 28 Count Station Hourly Traffic Count by Hour

Exhibit 6 - PennDOT Count Stations

Counted Intersections

In order to pinpoint locations of concern for existing and future traffic operations, turning movement counts were collected at 16 intersections along the corridor previously identified by the Steering Committee as higher volume or potentially congested intersections (ExHIBIT 7 and ExHIBIT 8). The counts were conducted using MioVision camera technology. Passenger cars and heavy vehicles were counted on Tuesday, November 19, 2019, an average weekday while school was in session. Count data for the AM and PM peak hours can be found in the diagrams in ExHIBIT 9 and EXHIBIT 10, respectively, along with truck percentages and peak hour factors.

Due to the length of the study corridor, intersections were grouped by area to determine the AM and PM peak hours. Some intersections belong to no grouping as they are isolated and far from the influence of other intersections. Generally, the AM peak hours began between 7:15 AM and 7:45 AM, and the PM peak hours began between 3:15 PM and 4:00 PM. Car and truck volumes were left unbalanced due to the distance between intersections along the corridor with intermediate driveways and businesses. A minimum value of 1 vehicle was applied for each movement that is allowed. This was done to improve reasonableness for the operational analysis, as zero values can create errors in the results.

Exhibit 7 - Counted Intersections

ID	Intersection Name
1	SR 28 \& SR 85
2	SR 28 \& SR 1004 (Madison Road) \& Kohlersburg Road
3	SR 28 \& Kohlersburg Road
4	SR 28 \& SR 1025 (Putneyville Road)
5	SR 28 (Broad Street) \& SR 66 (Wood Street)
7	SR 28 \& Center Street / Walker Flat Road
8	SR 28 \& SR 536 (Mayport Road)
9	SR 28 \& Carrier Street
10	SR 28 \& South Main Street
11	SR 28 \& SR 0322
12	SR 36 \& I-80 EB Ramps
13	SR 36 \& I-80 WB Ramps
14	SR 28 \& Waterford Pike
15	SR 28 \& I-80 EB Ramps
16	SR 28 \& I-80 WB Ramps

Exhibit 8 - Turning Movement Count Locations

Exhibit 9 - Peak Hour Volumes and Truck Percentages (2019 AM Peak)

Exhibit 10 - Peak Hour Volumes and Truck Percentages (2019 PM Peak)

Traffic Analysis Methodology

Capacity and level of service (LOS) analyses were completed to evaluate the operational performance of vehicular traffic within the study area. These analyses were completed for Base Year 2019 (Existing) and will be conducted for the future year 2045 in the Future Conditions Memorandum. The traffic analysis software used to analyze the operations at intersections was TrafficWare Synchro 10.3, Build 28, Revision 0. For two-lane highway, freeway, and ramp segments, the software McTrans Highway Capacity Software 7 (HCS) was used. HCS7 uses the Highway Capacity Manual, $6^{\text {th }}$ Edition methodology to develop Level of Service measures.

Synchro and Intersection Control Assumptions

Traffic signal plans were obtained from the PennDOT District 10-0 Traffic Unit for the signalized intersection locations on the corridor. The AM and PM peak period timing plan phasing, cycle lengths, splits, and offsets were input to Synchro software. The following parameters were used in the intersection traffic analysis:

- Peak hour factors were input by intersection by peak hour.
- Traffic volumes and heavy vehicle percentages by movement were also input by peak hour.
- Where applicable, the phasing and timings were translated to NEMA-compliant phasing to obtain consistent delay and level of service results.
- Parameters from PennDOT Publication 46 - Traffic Engineering Manual such as lost time adjustments and saturation flow rates were asserted according to information such as land use for intersections.
- Intersections were assumed as "rural" type except for the intersections in New Bethlehem and Brookville which were analyzed as "suburban".

Synchro assumptions for the intersections are listed in Exhibit 11. The Level of Service criteria used for signalized and unsignalized intersections is shown in ExнIвIT 12. The delay and Level of Service results from the Synchro analysis follow Highway Capacity Manual, $6^{\text {th }}$ Edition methodology, except where it cannot provide information due to complex geometry. In those cases, Synchro results for delay were used. LOS results for the 2019 AM peak hour and 2019 PM peak hour are found in EXHIBIT 13 and ExHIBIT 14 respectively.

All intersections currently operate at a LOS "C" or better overall. The left-turns at the signal at SR 85 (intersection \#1) operate under protected-only phasing, when coupled with long cycle times leads to poor levels of service in the peak hours. In the PM peak hour, the signalized off-ramp at I-80 and SR 36 (intersection \#13) exhibits a poor level of service for left-turns which are also protected-only. In general, capacity at intersections is not a major concern.

Exhibit 11 - Intersection Characteristics

ID	Intersection Name	Control Type	AM Peak Hour	PM Peak Hour	Grouping	Land Use Type
1	SR 85	Signal	7:15	4:00	None - isolated	Rural
2	Madison/Kohlersburg Rd	Stop	7:15	4:15	None - isolated	Rural
3	Kohlersburg Rd	Stop	7:15	3:15	1	Suburban
4	Putneyville Rd	Stop	7:15	3:15	1	Suburban
5	Broad at Wood	Signal	7:15	3:15	1	Suburban
7	Hawthorn	Stop	7:30	4:15	None - isolated	Rural
8	Mayport	Stop	7:15	3:30	None - isolated	Rural
9	Carrier St	Stop	7:15	3:00	None - isolated	Rural
10	South Main	Stop	7:45	3:45	2	Suburban
11	SR 322	Signal	7:45	3:45	2	Suburban
12	Waterford Pike	Stop	7:45	3:45	2	Suburban
13	I-80 EB Ramps at SR 36	Signal	7:45	3:45	2	Suburban
14	I-80 WB Ramps at SR 36	Signal	7:45	3:45	2	Suburban
15	I-80 EB Ramps at SR 28	Stop	7:30	3:45	3	Suburban
16	I-80 WB Ramps at SR 28	Stop	7:30	3:45	3	Suburban

Exhibit 12 - Level of Service Criteria for Signalized and Unsignalized Intersections

Level of Service	Intersection Delay (seconds/vehicle)	
	Signalized	Unsignalized
A	$0-10$	$0-10$
B	$>10-20$	$>10-15$
C	$>20-35$	$>15-25$
D	$>35-55$	$>25-35$
E	$>55-80$	$>35-50$
F	>80	>50

Exhibit 13 - Intersection Level of Service (2019 AM)

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
1	SR 28 @ SR 85	SR 85	EB	EBL	67.3	E	51.7	D	38.3	D
				EBT/R	40.9	D				
		SR 85	WB	WBL	47.8	D	41.4	D		
				WBT/R	26.3	C				
		SR 28	NB	NBL	319.2	F	29.7	C		
				NBT	18.8	B				
				NBR	0	A				
		SR 28	SB	SBL	129.6	F	37.5	D		
				SBT/R	28.7	C				
2	SR 28 at SR 1004 (Madison Rd)	SR 1004	EB	EBL/R	12.6	B	12.6	B	3	A
		SR 28	NB	NBL/T	9.3(L)	A	0.5	A		
		SR 28	SB	SBT/R	0	A	0	A		
21	Kohlersburg Rd at SR 1004 (Madison Rd)	SR 1004	EB	EBL/T/R	6.8	A	6.8	A	7.1	A
		Slip Ramp	WB	WBL/T/R	7.4	A	7.4	A		
		SR 1004	NB	NBL/T/R	7.9	A	7.9	A		
		Kburg Rd	SB	SBL/T/R	7.3	A	7.3	A		
3	SR 28 @ Kohlersburg Rd	Kburg Rd	EB	EBL/R	13.4	B	13.4	B	0.2	A
		SR 28	NB	NBL/T	8.7(L)	A	0	A		
		SR 28	SB	SBT/R	0	A	0	A		
4	SR 28 @ SR 839	SR 28	EB	EBL/T/R	8.9(L)	A	0.1	A	2.1	A
		SR 28	WB	WBL	9.4	A	1.2	A		
				WBT/R	0	A				
		SR 839	NB	NBL/T/R	11	B	11	B		
		Short St	SB	SBL/T/R	24.9	C	24.9	C		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
5	SR 28 at SR 66	SR 28	EB	EBL	9	A	8.1	A	14.6	B
				EBT/R	7.7	A				
		SR 28	WB	WBL/T/R	19.1	B	19.1	B		
		Wood St	NB	NBL/T/R	13.5	B	13.5	B		
		SR 66	SB	SBL/T/R	19.1	B	19.1	B		
7	SR 28 at Center St	SR 28	EB	EBL/T/R	9.5 (L)	A	0.3	A	1.2	A
		SR 28	WB	WBL/T/R	9.6(L)	A	0.2	A		
		Walker Flat Rd	NB	NBL/T/R	13.3	B	13.3	B		
		Center St	SB	SBL/T/R	12.1	B	12.1	B		
8	SR 28 at Mayport Rd SR 536	SR 28	EB	EBL/T/R	9(L)	A	0.2	A	2.6	A
		SR 28	WB	WBL/T/R	9.3(L)	A	0.6	A		
		Mayport Rd	NB	NBL/T/R	11.1	B	11.1	B		
		Driveway	SB	SBL/T/R	12	B	12	B		
9	SR 28 at Carrier St	SR 28	EB	EBL/T/R	8.8(L)	A	0.3	A	2.3	A
		SR 28	WB	WBL/T/R	9.1(L)	A	1.3	A		
		Carrier St	NB	NBL/T/R	9.8	A	9.8	A		
		Carrier St	SB	SBL/T/R	10.5	B	10.5	B		
10	SR 28 at S Main St	Driveway	EB	EBL/T/R	10.8	B	10.8	B	2.3	A
		S. Main St	WB	WBL/T/R	10	B	10	B		
		SR 28	NB	NBL/T/R	8.2(L)	A	0	A		
		SR 28	SB	SBL/T/R	8.7(L)	A	2.7	A		
11	SR 28 at SR 322	SR 322	EB	EBL/T/R	16.6	B	16.6	B	12.9	B
		SR 322	WB	WBL/T/R	14.9	B	14.9	B		
		SR 28	NB	NBL	10.7	B	13.6	B		
				NBT/R	14	B		B		
		SR 36	SB	SBL	9.4	A	9.7	A		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	$\begin{aligned} & \text { Intersection } \\ & \text { LOS } \end{aligned}$
				SBT	10.2	B				
				SBR	0	A				
12	SR 36 at I-80 EB Ramps	1-80 Ramps	EB	EBL/T	31.1	C	33	C	11.1	B
				EBR	34.5	C				
		SR 36	NB	NBT/R	7	A	6.8	A		
		SR 36	SB	SBL	4	A	7.1	A		
				SBT	8.4	A				
13	SR 36 at I-80 WB Ramps	I-80 Ramps	WB	WBL/T	30.2	C	32.2	C	10.5	B
				WBR	34.4	C				
		SR 36	NB	NBL	3.7	A	0.9	A		
				NBT	0.1	A				
		SR 36	SB	SBT/R	7.6	A	7.5	A		
14	SR 28 at Waterford Pike	SR 28	EB	EBL/T	9(L)	A	0.1	A	0.1	A
		SR 28	WB	WBT/R	0	A	0	A		
		Waterford Pike	SB	SBL/R	9.8	A	9.8	A		
15	SR 28 at I-80 EB Ramps	I-80 Ramps	EB	EBL/T/R	10.1	B	10.1	B	3.6	A
		SR 28	NB	NBT/R	0	A	0	A		
		SR 28	SB	SBL/T	8.3(L)	A	0.2	A		
16	SR 28 at 1-80 WB Ramps	1-80 Ramps	WB	WBL/T/R	9.8	A	9.8	A	2.8	A
		SR 28	NB	NBL/T	8.3(L)	A	1.7	A		
		SR 28	SB	SBT/R	0	A	0	A		
81	SR 28 at Dairy Rd	SR 28	EB	EBT/R	0	A	0	A	0.2	A
		SR 28	WB	WBL/T	9.2(L)	A	0.1	A		
		Dairy Rd	NB	NBL/R	10.6	B	10.6	B		

Exhibit 14 - Intersection Level of Service (2019 PM)

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
1	SR 28 @ SR 85	SR 85	EB	EBL	51.7	D	47.7	D	34.9	C
				EBT/R	44.3	D				
		SR 85	WB	WBL	50.5	D	45	D		
				WBT/R	29.2	C				
		SR 28	NB	NBL	108.3	F	26.8	C		
				NBT	24.1	C				
				NBR	0	A				
		SR 28	SB	SBL	117.2	F	29.2	C		
				SBT/R	23.3	C				
2	SR 28 at SR 1004 (Madison Rd)	SR 1004	EB	EBL/R	13.3	B	13.3	B	2	A
		SR 28	NB	NBL/T	9.2(L)	A	0.7	A		
		SR 28	SB	SBT/R	0	A	0	A		
21	Kohlersburg Rd at SR 1004 (Madison Rd)	SR 1004	EB	EBL/T/R	7.3	A	7.3	A	7.5	A
		Slip Ramp	WB	WBL/T/R	7.6	A	7.6	A		
		SR 1004	NB	NBL/T/R	7.8	A	7.8	A		
		Kburg Rd	SB	SBL/T/R	7.3	A	7.3	A		
3	SR 28 @ Kohlersburg Rd	Kburg Rd	EB	EBL/R	14.6	B	14.6	B	0.2	A
		SR 28	NB	NBL/T	8.9(L)	A	0	A		
		SR 28	SB	SBT/R	0	A	0	A		
4	SR 28 @ SR 839	SR 28	EB	EBL/T/R	9.1(L)	A	0	A	1.8	A
		SR 28	WB	WBL	9.5	A	1.9	A		
				WBT/R	0	A				
		SR 839	NB	NBL/T/R	10.6	B	10.6	B		
		Short St	SB	SBL/T/R	24.8	C	24.8	C		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
5	SR 28 at SR 66	SR 28	EB	EBL	9.4	A	8.6	A	15.6	B
				EBT/R	8.3	A				
		SR 28	WB	WBL/T/R	19.3	B	19.3	B		
		Wood St	NB	NBL/T/R	13.5	B	13.5	B		
		SR 66	SB	SBL/T/R	19.7	B	19.7	B		
7	SR 28 at Center St	SR 28	EB	EBL/T/R	9.7 (L)	A	0.5	A	1.4	A
		SR 28	WB	WBL/T/R	9.5(L)	A	0.4	A		
		Walker Flat Rd	NB	NBL/T/R	15.3	C	15.3	C		
		Center St	SB	SBL/T/R	12.5	B	12.5	B		
8	SR 28 at Mayport Rd SR 536	SR 28	EB	EBL/T/R	9.2 (L)	A	0.1	A	3.3	A
		SR 28	WB	WBL/T/R	9.4(L)	A	1.4	A		
		Mayport Rd	NB	NBL/T/R	13.1	B	13.1	B		
		Driveway	SB	SBL/T/R	14	B	14	B		
9	SR 28 at Carrier St	SR 28	EB	EBL/T/R	9.3(L)	A	0.1	A	2.4	A
		SR 28	WB	WBL/T/R	9.1(L)	A	1.4	A		
		Carrier St	NB	NBL/T/R	11.4	B	11.4	B		
		Carrier St	SB	SBL/T/R	12.1	B	12.1	B		
10	SR 28 at S Main St	Driveway	EB	EBL/T/R	11.2	B	11.2	B	4	A
		S. Main St	WB	WBL/T/R	12.4	B	12.4	B		
		SR 28	NB	NBL/T/R	8.6(L)	A	0.1	A		
		SR 28	SB	SBL/T/R	8.6(L)	A	0.8	A		
11	SR 28 at SR 322	SR 322	EB	EBL/T/R	18.5	B	18.5	B	14.1	B
		SR 322	WB	WBL/T/R	16.4	B	16.4	B		
		SR 28	NB	NBL	12.4	B	15.4	B		
				NBT/R	16	B				
		SR 36	SB	SBL	9.3	A	10	A		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
				SBT	11.1	B				
				SBR	0	A				
12	SR 36 at I-80 EB Ramps	I-80 Ramps	EB	EBL/T	29.5	C	33.9	C	13.2	B
				EBR	36.8	D				
		SR 36	NB	NBT/R	8.7	A	8.5	A		
		SR 36	SB	SBL	5.1	A	8.2	A		
				SBT	9.4	A				
13	SR 36 at I-80 WB Ramps	I-80 Ramps	WB	WBL/T	174	F	97.1	F	29.7	C
				WBR	32.7	C				
		SR 36	NB	NBL	5.7	A	1.5	A		
				NBT	0.2	A				
		SR 36	SB	SBT/R	10.9	B	10.8	B		
14	SR 28 at Waterford Pike	SR 28	EB	EBL/T	9.6(L)	A	0.2	A	0.2	A
		SR 28	WB	WBT/R	0	A	0	A		
		Waterford Pike	SB	SBL/R	13.4	B	13.4	B		
15	SR 28 at I-80 EB Ramps	I-80 Ramps	EB	EBL/T/R	10.1	B	10.1	B	2.4	A
		SR 28	NB	NBT/R	0	A	0	A		
		SR 28	SB	SBL/T	8.7(L)	A	0.5	A		
16	SR 28 at I-80 WB Ramps	1-80 Ramps	WB	WBL/T/R	12.6	B	12.6	B	3.3	A
		SR 28	NB	NBL/T	8.6(L)	A	3.1	A		
		SR 28	SB	SBT/R	0	A	0	A		
81	SR 28 at Dairy Rd	SR 28	EB	EBT/R	0	A	0	A	0.1	A
		SR 28	WB	WBL/T	9.2(L)	A	0	A		
		Dairy Rd	NB	NBL/R	11.1	B	11.1	B		

Highway Capacity Analysis Assumptions

Highway Capacity Software 7 (HCS7) was used to analyze the operations of two-lane highways, freeway segments, and ramps. Assumptions behind HCS inputs such as free flow speed, peak hour factor, terrain type, and driver population are as follows:

- Highway free flow speeds were assumed as posted speed limit plus 5 miles per hour. Ramp free flow speeds were assumed as posted speed plus 5 miles per hour.
- All were assumed to have rolling terrain, a familiar driver population, non-severe weather, and rural area type.

Where no corridor-specific data was available to assert otherwise, default values in HCS were maintained. These assumptions were carried through to all future year analyses.

Level of service from HCS7 reflects the criteria outlined in the Highway Capacity Manual, $6^{\text {th }}$ Edition. Level of service for basic freeway segments and freeway merge and diverge segments can be found in EXHIBIT 15. Level of service for freeways and merge and diverge segments is based on roadway density in passenger cars per mile per lane. There are no weaving segments in existing or future conditions within the area of influence.

Level of service thresholds for two-lane highways can be found in ExHIBIT 16. For two-lane highways of Class I, level of service is based on the segment average travel speed (ATS) in miles per hour, and percent time spent following (PTSF) in percent. Class II two-lane highway level of service is based on PTSF.

Since the corridor is over 40 miles long and has varying lane and shoulder widths, the capacity analysis focused on five representative typical sections along the corridor, as well as nine locations of existing climbing lanes, and four areas with significant grades for potential climbing lanes.

Exhibit 15 - Level of Service Thresholds for Interstates

Level of Service	Interstate Density (pc/mi/ln)
A	$>0-11$
B	$>11-18$
C	$>18-26$
D	$>26-35$
E	$>35-45$
F	Demand exceeds capacity

Exhibit 16 - Level of Service Thresholds for Twolane Highways

Level of Service	Class I Highway		Class II Highways
	PTSF\%	PTSF\%	
A	>55	$<=35$	$<=40$
B	$>50-55$	$>35-50$	$>40-55$
C	$>45-50$	$>50-65$	$>55-70$
D	$>40-45$	$>65-80$	$>70-85$
E	$<=40$	>80	>85

Traffic Analysis Results

Exhibit 17 shows the results from the Highway Capacity Analysis for general corridor segments. Inputs and outputs from the highway capacity analysis can be found in APPENDIX B. In general, the analysis shows acceptable levels of service on the typical sections.

Exhibit 18 shows the results for the segments where the uphill grade is significant or over a long length, such as for the currently 1 -lane segments at southbound ID \#92. At this location, the LOS is E due to a low average travel speed. Anything at or below 40 mph is considered failing for Class I Highways. This may be a candidate for a future climbing lane, pending the traffic criteria and warrants are met.

This traffic analysis along with field observations and input from locals have shown that while roadway capacity isn't the main issue, the likelihood of experiencing a slow down during a long trip due to following a slow-moving vehicle without frequent opportunities to pass causes significant driver frustration. A driver's anticipation that a long trip should be at highway speeds of 55 mph or more also factors into the perceived poor operations, due to frequent speed limit changes below 55 mph throughout communities on the corridor.

Exhibit 17 - Highway Capacity Analysis Results for General Segments

ID	Direction	Southern Terminus	Northern Terminus	2019					
				AM Peak Hour			PM Peak Hour		
				Average Travel Speed (mph)	Percent Time Spent Following	$\begin{aligned} & \text { Level } \\ & \text { of } \\ & \text { Service } \end{aligned}$	Average Travel Speed (mph)	Percent Time Spent Following	$\begin{aligned} & \text { Level } \\ & \text { of } \\ & \text { Service } \end{aligned}$
1	Northbound	Oscar Rd	Baum Pump Station	46.8	56	C	45.3	76.9	D
	Southbound			46.2	72.2	D	45.6	62.5	C
2	Northbound	SB Truck Climbing Lane	0.3 miles south of King St	47.5	68	D	47.1	68.5	D
	Southbound			47.9	58.6	C	47.4	66.2	D
3	Northbound	Longview Rd	Yearney Lane	47.5	66.3	D	48.1	60.7	C
	Southbound			47.8	61.8	C	48.1	66.5	D
4	Northbound	Dewey Rd	SR 2001	45.5	58.1	C	45.4	52.9	C
	Southbound			45.7	50.7	C	44.9	64.6	D
5	Northbound	Moore Rd	Mendenhall Rd	46.5	63.1	C	46.3	49.9	C
	Southbound			47.2	43.7	C	45.3	71.1	D

Exhibit 18 - Highway Capacity Analysis Results for Climbing Lanes

ID	Direction	Configuration	2019					
			AM Peak Hour			PM Peak Hour		
			Average Travel Speed (mph)	Percent Time Spent Following	Level of Service	Average Travel Speed (mph)	Percent Time Spent Following	Level of Service
10	Northbound	2 Lanes	53.9	7.6	B	54.3	12.7	B
11	Northbound	2 Lanes	53	6	B	56.4	8.6	A
12	Northbound	2 Lanes	53.5	6	B	56.8	8.6	A
13	Northbound	2 Lanes	52.4	6.6	B	50.3	6.1	B
90	Northbound	1 Lane	42	48.5	D	41.4	77	D
91	Northbound	1 Lane	44	47	D	43.8	65.7	D
14	Southbound	2 Lanes	52.7	6.9	B	53.7	5.8	B
15	Southbound	2 Lanes	53.4	7.2	B	54.7	6	B
16	Southbound	2 Lanes	57.1	7	A	53.7	9.7	B
17	Southbound	2 Lanes	54.4	2.7	B	56.6	6.9	A
18	Southbound	2 Lanes	53	4	B	53.6	10.1	B
92	Southbound	1 Lane	39.1	59.2	E	40.5	44.2	D
93	Southbound	1 Lane	43.2	59.2	D	44.4	44.2	D

Speed and Travel Times

Speed and travel time are noted concerns for residents and businesses that use the Route 28 corridor. Observations on the corridor show that getting stuck behind a slow-moving vehicle in an area with no climbing lanes or passing zones creates driver frustration, leading to aggressive driving behavior such as speeding and improper passing. The data shows a wide range of preferred speeds for travelers on the corridor, as well as the speed differentials between passenger cars and large commercial vehicles.

Speed limits fluctuate throughout the corridor from 25 mph in built-up areas like New Bethlehem, to 35 mph leaving the city, 40 mph , and 45 mph around curves and 55 mph in most sections between communities. The speed limit fluctuates frequently between Distant, New Bethlehem, and Hawthorn. It was noted during stakeholder interviews that speed limits may not be consistently posted for the same segment of roadway in opposing directions. Current posted speed limits are shown in ExHIBIT 19.

SPC provided observed speed and travel time data for the corridor from INRIX. INRIX is a data repository for historical congested travel speeds and travel times. There are 13 INRIX segments that cover the length of the Route 28 corridor, ranging from 0.1 to 7.4 miles in length. On average, the segments are about 3 miles in length. The date range used in the INRIX analysis was the average of weekday peak 7-8 AM hour and 4-5 PM hours in 2018. The free flow speed referenced for this study was assumed to be the maximum observed average speed on weekdays or weekends.

Speeding is a noted concern - maximum observed speeds are shown in Exhibit 20. In areas like New Bethlehem, maximum speeds range from 35 to 40 mph in the posted 25 mph zone. Most segments in the corridor have maximum observed speeds trending above 55 mph , including on areas with significant grades and curvature. On average, the maximum speeds for cars on the corridor is 57 mph . The average maximum speed for trucks on the corridor is 51 mph . This 6 mph speed differential is exacerbated on areas where there are significant grades. EXHIBIT 21 illustrates the speed differentials between passenger cars and trucks. The longest segment of speed differential between cars and trucks is from approximately Goheenville to Distant (5 to 10 mph difference) over the area known locally as Hogback Hill. Field
 observations and GIS data noted areas of significant grade change in this area. Another segment with a high-speed differential between cars and trucks is coming into South Bethlehem around the 15 mph curve through New Bethlehem (10 to 15 mph difference).

Exhibit 19 - Speed Limits

Exhibit 20 - Maximum Observed Speeds All Vehicles

Exhibit 21 - Speed Differential between Cars and Trucks

Grades

Roadway grades were mapped for the corridor to better understand areas where cars and trucks are subject to different acceleration and braking requirements. Grades were mapped using elevations captured at 1000-foot intervals. In the northbound direction, the uphill grades (> 3\%) are shown in red, and downhill grades ($<3 \%$) are shown in blue. Anything between 3% grade was shown as "rolling" or "flat". Based upon the observed average maximum speed for cars and truck at approximately 55 MPH , grades exceeding 5\% have been identified. This correlates with PennDOT's Design Manual 2 maximum vertical grade criteria of 5% based upon functional classification of the Route 28 Study Corridor. This vertical grade is shown to provide an understanding of locations where existing grades may be effecting traffic operations.

The mapped grade data was compared to the locations of existing truck climbing lanes and passing zones, in order to understand where truck climbing lanes might be warranted (EXHIBIT 22). General purpose passing zones on relatively flat surfaces are also included on this map to give an idea of how frequently there are opportunities to overtake vehicles. The map shows locations south of New Bethlehem that have steep grades for long stretches with no climbing lanes.

Exhibit 22 - Grades and Climbing Lanes

Route 28 Kittanning to I-80 Regional Corridor Planning Study Grades and Climbing Lanes

ReUTE28
CORRIDOR STUDY

Detour Conditions

Posted detour routes on Route 28 can be seen in Exhibit 22. Detour traffic from I-80 was a concern noted by nearly all stakeholders as portions of the SR 28 corridor are marked for the Orange, Blue, and Green detours converging at US 322 as shown in Exнibit 23. Detour traffic from travelers following their personal navigation devices and getting back on to be detoured again was identified as an issue.

INRIX historical speed data was used to understand the range of influence and operational impact of I-80 detour traffic on the corridor. Incident logs were pulled to identify dates of full roadway closures on I-80 in the vicinity of the study area. This data was analyzed to evaluate historical hourly speed data. One particular closure of I-80 was examined. This was an incident that occurred on August $8^{\text {th }}, 2016$ where I-80 had a significant hours-long closure due to a multi-vehicle accident. The closure started around 2 pm and extended through the PM peak hours. This incident was evaluated using three INRIX segments of probe data on SR 28 - near I-80, the middle of the corridor near New Bethlehem, and the south near Kittanning.

Exhibit 24 shows the southbound segment of Route 28 in the vicinity of US 322, closest on the corridor. Average hourly speeds drop from approximately 32 mph before the closure down to about 5 mph for three hours during the closure, as traffic has detoured traffic away from I-80. The congestion lasts until approximately 9 pm when speeds return to about 31 mph . Exhibit 25 shows the southbound segment of Route 28 approximately 20 miles south of I-80 near New Bethlehem. New Bethlehem speeds began to drop from 40 mph at 3 pm to a low of 19 mph at 7 pm . Speeds in New Bethlehem climbed back to free flow by about 8pm. Exнiвit 26 shows the southernmost segment of the Route 28 corridor approximately 35 miles south of I-80 near Kittanning. A small drop in speed was experienced around 2pm, perhaps as travelers were notified of the closure and changed their routes mid-navigation.

This analysis supports that interstate closures can have widespread impacts on the corridor traffic operations. This in conjunction with detour route choice and signage, and travelers using personal devices to navigate off of I-80 create bottleneck
 conditions that are challenging for emergency responders, residents, and the traveling public.

The New Bethlehem bridge was identified by stakeholders as an infrastructure security concern as there is no redundancy in the roadway system. The Black Detour route is posted for the New Bethlehem bridge closures. The typically 17-mile stretch of Route 28 is detoured westward at a length of more than 43 miles through many villages and communities that are not easily navigable by trucks to reach New Bethlehem or Kittanning.

Exhibit 23 - Route 28 Posted Detour Routes

Exhibit 24 - I-80 Posted Detour Routes

Exhibit 25 - Southbound Route 28 Speed Effects during I-80 Closure (Near US 322)

Exhibit 26 - Southbound Route 28 Speed Effects during l-80 Closure (Near New Bethlehem)

Exhibit 27 - Southbound Route 28 Speed Effects during I-80 Closure (Near Kittanning)

Streetlight Data

Streetlight is a big-data company that provides roadway analytics from anonymized Bluetooth and cellular device information. The data can be analyzed by transportation planners to examine travel behavior and traveler demographics. Streetlight provides data for personal and commercial travel types. It also provides some information on multimodal travel including bicyclists and pedestrians. Access to the Streetlight data service was provided by the Southwestern Pennsylvania Commission's subscription in support of the Route 28 Corridor Study.

The data was analyzed to understand existing travel conditions on the Route 28 corridor, such as the lengths of trips. ExHibit 27 shows general characteristics of all trips over the 40 -mile length of the study corridor. More than half of the trips on the corridor are over 60 minutes in duration, with a large number of trips over 120 minutes. This trip duration includes commercial vehicle traffic, which may have hauling routes along the corridor or destined northward to Forest, Elk or Venango counties. Trip lengths correspond with the trip duration, with a majority of trips longer than 30 miles. More than half of the travel speeds are between 30 and 50 mph , with approximately 16% traveling 50 to 70 mph .

Exhibit 28 - Trip Characteristics

Who does the Route 28 corridor serve? Exhibit 28 shows the geographic spread of the home locations of travelers. The cluster shows that travelers on this 40-mile section of the Route 28 corridor primarily live and work in areas adjacent to the corridor to the east and west. There are fewer home locations of Route 28 travelers north of I-80. The cluster of home locations stretches as far southwest as Pittsburgh, with a few isolated clusters focused primarily in places that are accessible via Route 28, I-80, I-79, US 422, and US 322 such as Youngstown, Erie, Altoona, and State College. The public survey conducted for this study was targeted to the zip codes surrounding the corridor and advertised on the Southwestern Pennsylvania Commission's social media pages.

Where are people going on the Route 28 corridor, and at what levels of frequency? ExHIBIT 29 uses a point in the middle of the corridor to show all personal trips passing through this point on a weekday and their origins and destinations. This map highlights a distinct diagonal pattern of trips that follows the trajectory of the corridor. There is a large geographic catchment area in the northeast counties (Forest, Elk, Warren, McKean, Clearfield, Cameron) for Route 28 traffic destined to Kittanning and Pittsburgh, as well as hauling, tourist-related traffic for outdoors activities to the northeast counties.

Exhibit 29 - Home Grids for Route 28 Corridor Travelers

Exhibit 30 - Origin-Destination Heat Map (Weekdays)

How are people using the multimodal facilities on the corridor? The Open Street Map alignment data for the Redbank Valley Trail and Armstrong County Trail were imported to understand bicycle and pedestrian usage of the trail system (ExHIBIT 30). A point in New Bethlehem was chosen to see a snapshot of the trail user demographics and trip characteristics. Exhibit 31 shows the education, family status, and income levels of trail users. EXHIBIT 32 shows the trip duration characteristics of the trips on the trail.

The largest proportion of trips on the corridor are 45-60 minutes in length, which reveals a tremendous benefit to public health in the communities that it serves. The length of the trail and access available to users along the Route 28 Corridor provides a great
 regional recreational asset.

Exhibit 31 - Redbank Valley Trail (New Bethlehem) User Demographics

Exhibit 32 - Redbank Valley Trail (New Bethlehem) Trip Characteristics

Streetlight data was used to examine the distribution of trips passing a point near the intersection of Route 28 and South Main Street in Brookville. It shows traffic coming from approximately Williamsport and Brookville in the east, from areas slightly north of the l-80 interchange such as Sigel and Brockway down through Kittanning and Pittsburgh. Applying a filter to the proportion of traffic shows the popular destinations of traffic past this point. Approximately 15% of trips passing this point are destined to Kittanning (ExHIBIT 34). Approximately 4\% of trips passing this intersection are destined to Pittsburgh (EXHIBIT 35). This finding shows that the corridor primarily serves demand to Kittanning and communities along the Route 28 corridor, rather than functioning currently as a regional through route.

Exhibit 33 - Distribution of Traffic Passing a Point On Route 28 near South Main St Brookville
(Filtered by 15\%)

Exhibit 34 - Distribution of Traffic Passing a Point On Route 28 near South Main St Brookville (Filtered by 4\%)

Exhibit 36 shows a Top Route from Pittsburgh to a point east of Brookville. It highlights two main routes: the Route 28 corridor, and the I-79 to I-80 corridor. The Streetlight Index is a proportional approximation of traffic along the route. The Streetlight Index for the Route 28 corridor (80.6 miles, 1 h 31 m) is 65 versus an index of 26 for I-79 to I-80 (118 miles, 1 h 50 m). This shows that Route 28 is approximately three times more popular than I79 to l-80 for this origin-destination zone pair. The reverse is also true. The trip southbound from Brookville to Pittsburgh shows Route 28 almost four times more popular with an index of 87 compared to l-80 to I-79 with an index of 23 . However, we do not currently observe a significant amount of through traffic on this route because there is not significant demand between these two points. For example, about 4% of traffic passing South Main Street near Brookville is destined to/from Pittsburgh. Most trips were destined adjacent to the along the Route 28 Corridor or Kittanning.

Exhibit 35 - Top Routes from Pittsburgh to Brookville

In summary, the Streetlight data for the Route 28 corridor confirms the understanding that a majority of trips on the corridor are longer distance trips that service residences, business, and industry in the vicinity of the 40-mile corridor and beyond, into the rural counties in the northeast. It also indicates that Route 28 is a preferred route for the regional connection from Pittsburgh to l-80, though geometric constraints and economic conditions may play a role in the low demand between the two points currently.

Safety Analysis

Methodology

The most recent five years of available crash data (2013 to 2017) were compiled from the Pennsylvania Crash Information Tool (PCIT). Information relating to vehicle crash type, injury severity, weather conditions, time of day, seasonality, illumination, and roadway condition were analyzed to identify crash patterns and locations where the overall crash and fatality rates are higher than the statewide average.

The Department of Transportation defines a "reportable crash" as those that involve a fatality, injury, or require towing of one or more vehicles. Therefore, the crash system includes data from those "reportable" incidents only. The segments encompass approximately 40 miles of roadway network along Route 28 from Kittanning to I-80.

Crash History Analysis

Analysis of the crash data along the Route 28 corridor identified 291 reported motor vehicle crashes within the five-year period 2013 to 2017. Reported crash cluster patterns and trends are summarized below.

To drill down into the crash patterns, sub-segments of the corridor were chosen for analysis among different land use and transportation contexts. ExHIBIT 37 shows the crash frequency analysis from south to north along the corridor. Exhibit 37 shows the boundaries. From south to north, these included:

- Hayes Hollow area from US 422 through SR 85 to SR 1035 (Oscar Road)
- Goheenville area from SR 1018 to the Mahoning Creek
- Distant area from the Mahoning Creek to the 15 mph curve south of South Bethlehem
- New Bethlehem area from the 15 mph curve in South Bethlehem to west of SR 1013
- Hawthorn area from SR 1013 through SR 536 Mayport Road to Sandy Flat Road
- Summerville area from Sandy Flat Road to south of South Main Street
- Brookville area from South Main Street through US 322 to the I-80 ramps

Exhibit 36 - Geographic Context of Overall Crash Frequency

Context	Length	Crashes	Percent	Crashes/Mile
Hayes Hollow	7.2	96	33%	13.3
New Bethlehem	3.7	36	12%	9.7
Summerville	7.3	63	22%	8.7
Goheenville	6.2	37	13%	6.0
Hawthorn	8.0	44	15%	5.5
Brookville	1.7	7	2%	4.1
Distant	4.1	8	3%	2.0
Total	38.2	291	100%	-

Exhibit 37 - Crashes by Context Area

A general safety analysis of the entire corridor existing conditions was prepared to examine crash contributing factors and details such as location, type, severity, time of day, weather, seasonality, and illumination type. The crash location information shows that of the 291 reported crashes, 232 (80 percent) occurred at a mid-segment location, 56 (19 percent) occurred at an intersection, and remaining 3 crashes are identified as other types (1 percent) (ExHIBIT 39). The primary crash type observed involved vehicles hitting fixed objects (40 percent), angle crashes (20 percent), and rear-end crashes (14 percent) (ExHIBIT 39).

Approximately 5 percent of the crashes involved serious to fatal injuries (ExHIBIT 40). Overnight and mid-day were the highest time periods for crashes, with 70 percent of the daily crashes combined (EXHIBIT 42). 74 percent of crashes occurring during no adverse weather conditions (Exhibit 42). Winter and fall were the highest seasons for crashes at around 63 percent combined (EXHIBIT 44). 61 percent of crashes occurring in the daylight (ExHIBIT 45).

Exhibit 38 - Crash Location Breakdown

| Crash Location | Number of Crashes | Percentage |
| :--- | ---: | ---: | ---: |
| Mid-segment | 232 | 80% |
| Intersection (Four-way, Multi-Leg, T, Y) | 56 | 19% |
| Other | 3 | 1% |
| Total | 291 | 100% |

Exhibit 39 - Crash Type Breakdown

| Type of Crash | Number of Crashes | Percentage |
| :--- | ---: | ---: | ---: |
| Hit fixed object | 117 | 40% |
| Angle | 59 | 20% |
| Rear-end | 41 | 14% |
| Other or unknown | 37 | 13% |
| Non-Collision | 16 | 5% |
| Head-on | 10 | 3% |
| Sideswipe (same dir) | 4 | 1% |
| Sideswipe (opp dir) | 4 | 1% |
| Hit pedestrian | 3 | 1% |
| Total | 291 | 100% |

Exhibit 40 - Crash Severity Breakdown

Crash Severity	Number of Crashes	Percentage
Not injured	154	
Minor Injury	53	53%
Possible Injury	46	18%
Unknown injury	15	16%
Serious Injury	14	5%
Unknown if injured	5	5%
Fatal Injury	5	5
Total	4	2%

| Crash Time | Number of Crashes | Percentage |
| :--- | ---: | ---: | ---: |
| Overnight | 119 | 41% |
| Mid-Day | 71 | 24% |
| PM Peak | 59 | 20% |
| AM Peak | 42 | 14% |
| Total | 291 | 100% |

Exhibit 42 - Crash Weather Condition Breakdown

Weather Condition	Number of Crashes	Percentage
No adverse conditions	208	
Snow	37	71%
Rain	35	13%
Fog	6	12%
Sleet (hail)	2	2%
Unknown	2	1%
Other	2	1
Rain and fog	1	1%
Sleet and fog	0	0%
Total	0	0%

Exhibit 43 - Crash Seasonality Breakdown

| Season | Number of Crashes | Percentage |
| :--- | :---: | :---: | :---: |
| Fall | 83 | 29% |
| Winter | 74 | 25% |
| Summer | 69 | 24% |
| Spring | 65 | 22% |
| Total | 291 | 100% |

Exhibit 44 - Crash IIlumination Type Breakdown

Illumination Condition	Number of Crashes	Percentage
Daylight	160	55%
Dark - no street lights	102	35%
Dark - street lights	18	6%
Dawn	7	2%
Dusk	2	1%
Dark - unknown	1	0%
Other	1	0%
Total	291	100%

Crash Rate Comparison

An annualized crash rate for each segment was calculated for the five-year period for comparison to the Pennsylvania statewide average crash rate. The crash data was converted to an annual crashes per 100 million vehicle miles traveled by segment for comparison to the most recent available crash information from PennDOT, 2017 Pennsylvania Crash Facts and Statistics. The crash rate was calculated by dividing the annual crash frequency by the current average annual daily traffic and segment distance found in PennDOT's Roadway Inventory Management System (RIMS) data. For comparison, Pennsylvania's 2017 overall statewide crash rate was 126.8 crashes per hundred million vehicle-miles of travel; the 2017 statewide fatality rate was 1.12 fatalities per hundred million vehicle-miles of travel.

The corridor had higher than statewide average rates of fatalities on three segments - in the vicinity between Kittanning and Goheenville and near Hawthorn (ExHIBIT 45). There were four fatal crashes reported in the period from 2013-2017. Of those, three were head-on collisions, and one was a hit fixed object collision. All occurred during dry roadway conditions, 3 were in daylight. One included a heavy vehicle. Three of the crashes were in 2015, and one was in 2013. There was no pattern in the time of day or location.

The other higher-than-statewide-average crash frequency on the corridor is hit fixed object collisions. There are two major segments for high Hit Fixed Object type crashes, between Goheenville and Distant, and between Summerville and Brookville (ExHIBIT 46). Geometric constraints may play a factor in these types of collisions.

Of the 291 crashes, 153 closed a lane of traffic (53\%) for some period of time. Of those, 34 (12\%) were reported as requiring a traffic detour. On average, each of the detours were in place for three hours.

There were three pedestrian-involved crashes, two of which occurred in downtown New Bethlehem and one on a segment of Route 28 near Shannondale Road where there are no pedestrian facilities (ExHIBIT 50). There were four crashes involving school buses, one including a loaded school bus in the AM peak hour with three injuries and 34 people involved. Two of the school bus collisions were rear end accidents, both of which occurred around the curve north of Summerville between Coder Road and Seldom Seen Road, including the one with the loaded school bus (EXHIBIT 51). Limited sight distance and speeds seem to be contributing factors in this area.

The outreach to project stakeholders and the public identified key segments and intersections as potential safety concerns. The crash patterns and history at these locations were further analyzed to determine if a correctable pattern of collisions could be identified. The crash patterns were analyzed in the following insets:

Exhibit 47 shows:

- Mayport Road SR 536 - At this location, there were two angle and one hit fixed object crash in the five year period.
- Sloan Hill Road / Mechling Road - At this location, there was one hit fixed object, one angle, and one head on collision. This inset also shows the Lower Hayes Road area locally known as the Hayes Dip. There were no crashes reported at this location in the five-year period.
- SR 85 - At this location, there were two rear end collisions, two hit fixed object, and two angle collisions. Rear end and angle collisions are common at signalized intersections.

Exhibit 48 shows:

- 15 mph curve leading into South Bethlehem - at this location, there were two hit fixed object crashes.
- 45 mph curve between New Bethlehem and Hawthorn - at this location, there was one hit fixed object crash. There is a cluster of crashes at the location of the Redbank Valley Trail crossing just to the south of this curve. Though there are no reported pedestrian hits. It is unclear from the data whether these were near-misses with bicyclists and pedestrians, or if these were run-off-the-road crashes due to the geometry of the roadway.
- Distant - at this location, there was only one hit fixed object crash.

ExHIBIT 49 shows:

- South Main Street - at this location, there were no crashes.
- Broad at Wood Street and greater New Bethlehem - in this area, there are few crashes. There were two pedestrian-involved accidents downtown.
- SR 1035 (Oscar Road) - at this location, there are a few hit fixed object crashes nearby and one rear end on SR 28.

PennDOT Safety Screening

SPC provided a PennDOT rates were compared. PennDOT conducts a statewide inventory of observed crashes versus predicted crashes based on roadway geometry and the Highway Safety Manual. Through this process, PennDOT identifies roadway segments with observed crashes greater than the predicted amount of crashes. These are identified as areas with excess crashes. ExHIBIT 52 shows segments along the Route 28 corridor that have been identified as areas of potential excess crashes. This identification may provide insight on locations where crashes are occurring more frequently than predicted, thus enabling engineers to identify correctable design features.

Safety Summary

The project-specific crash history analysis comparison against the statewide average rate coupled with PennDOT's predictive safety screening processes help the project team to identify areas with correctable safety features. The statistical patterns generally support concern areas that were identified by the steering committee, public, and stakeholders. In most cases, geometric constraints including horizontal and vertical curvature and poor sight distance may contribute to the high Hit Fixed Object crash type found on the winding curves of the corridor. The safety information is accounted for in the evaluation matrix and used to develop the purpose and need for certain improvement concepts.

Exhibit 45 - Crash History Comparison (Fatalities)

Exhibit 47-Crash History Collision Type Analysis (Insets 1)

Exhibit 48 - Crash History Collision Type Analysis (Insets 2)

Exhibit 49 - Crash History Collision Type Analysis (Insets 3)

Exhibit 50 - Crashes Involving a Pedestrian

Exhibit 51 - Crashes Involving a School Bus

Exhibit 52 - PennDOT Safety Screening Segments

Multimodal Facilities

While the Route 28 corridor today primarily serves passenger car and commercial freight traffic, the corridor also serves pockets of multimodal activity surrounding communities and areas like Distant, South Bethlehem, New Bethlehem, Redbank Valley High School, the Redbank Valley Trail, and Hawthorn. This section describes the land use context and multimodal facilities in each of these areas.

Distant

Distant is a primarily residential community with homes with close setbacks and driveways directly accessing Route 28. There are also agricultural uses nearby including Bostonia Farms. The speed limit in Distant is reduced from 55 mph coming up Hogback Hill to 40 mph through town. Distant is home to pedestriangenerating stores such as Sweet Delights ice cream and a Dollar General which was built in recent years. There is approximately 1000 feet of sidewalk on the north side of Route 28 from the SR 1004 intersection to a residential endpoint approximately 200 feet
 west of Sweet Delights on the opposite side of the roadway. The Dollar General is approximately 1000 feet further east. There are no marked crosswalks or ADA-compliant curb ramps in this area. The sidewalk is narrow but in overall good condition without significant heaving, cracking, or overgrowth. A general inventory of Distant's multimodal facilities and pedestrian generators is shown in EXHIBIT 54.

South Bethlehem

Rounding the 15 mph curve going northbound on Route 28 entering South Bethlehem, sidewalks begin and are located on both sides of the roadway through a traditional residential street grid. Many of the sidewalks and curb ramps are narrow, heaved due to tree roots, overgrown with grass, cracked, and have no curb ramps. In one instance, there is a step at the ramp. There are no marked crosswalks or pedestrian crossing signs in this area. West of the curve, there is a pedestrian bridge over the Redbank Creek which provides an official access point to the Redbank Valley Trail. This access is not signed from the roadway or connected to the community by sidewalk. At the intersection with SR 839 / Putneyville Road, there are three curb ramps with detectable warning surfaces. A general inventory of South Bethlehem's multimodal facilities and pedestrian generators is shown in Exhibit 55.

New Bethlehem

The bridge over Redbank Creek crossing into New Bethlehem from South Bethlehem has sidewalks and curb ramps on both sides. In downtown New Bethlehem, there is a walkable street grid with sidewalks on both sides of the street, recently updated curb ramps with detectable warning surfaces, mid-block pedestrian crossings, and parking on both sides of the street. The speed limit in this segment is reduced to 25 mph . Sidewalk on the north side of the roadway ends around Keck Avenue near the Smucker's facility, but continues on the south side of the corridor toward the Library and mini-mall. A general inventory of New Bethlehem's multimodal facilities and pedestrian generators is shown in ExHIBIT 56.

Library and Redbank Valley High School

Heading north on Route 28, the speed limit is 35 mph towards the plaza, which has a Riverside grocery store, Burger King, a plaza with restaurants, and the New Bethlehem Public Library. The sidewalk continues on to the Redbank Valley High School football field and main building. Across the street from the high school's main entrance is a cluster of small businesses including a chiropractor and a Subway restaurant. There is one marked pedestrian crossing across Route 28 near the main entrance, and signs for "no parking". Parking in the business lots around dismissal time is a problem for these businesses. Student dismissal was a concern for stakeholders, as large numbers of students cross to be picked up, and walkers cross the street to use the rail trail which leads back to their homes in the heart of downtown New Bethlehem. The sidewalk ends at the edge of the Redbank Valley High School property approximately 900 feet east of the high school crosswalk. A general inventory of this area's
 multimodal facilities and pedestrian generators is shown in ExHIBIT 57.

Redbank Valley Trail Crossing

Heading north away from the High School, the speed limit picks up again to 45 mph near M\&S Meats. The building density in this area decreases and the roadway curvature resumes. Approximately 0.75 miles east of the last sidewalk, the Redbank Valley Trail crosses the Route 28 corridor at an angle between two horizontal curves. There is signage for trail ahead and what remains of a marked crossing. Stakeholder interviews indicated that the trail is under Public Utility Commission (PUC) jurisdiction, and that the PUC responded to complaints about the location of the crossing by removing the crosswalk striping. An aerial view of the trail crossing location at Route 28 is shown in ExHIbIT 58.

Hawthorn

In Hawthorn, approximately 0.5 mi of sidewalk network is present on the northern side of Route 28 from Yost to E $1^{\text {st }}$ Street. The Redbank Valley Trail runs is visible from Route 28 and runs parallel to the roadway in this area at approximately 15 to 50 feet away, but there are no marked crossings across Route 28. This area was reported as a hot spot for canoe and kayak activity in the summer months due to the accessibility of the Redbank Creek in the area. Hawthorn is also home to Redbank Valley Municipal Park, where the Clarion County Fair is held each year, and also has camp sites, shelters, and RV hookups. North of this area, Route 28 and the Redbank Valley Trail diverge as the trail follows the river. Fishbasket Indian Town historical marker in this area depicts where Native Americans settled on the river. A general inventory of Hawthorn's multimodal facilities and pedestrian generators is shown in Exhibit 59.

The crash analysis revealed four school bus-involved crashes, three pedestrian-involved crashes, and no bicycle-involved crashes. Two of the pedestrian-involved crashes were in downtown New Bethlehem at midblock locations.

Another mode that is prevalent on the corridor are ATVs.
 Popular ATV trails cross the corridor and frequent poker runs are a large regional tourism draw.

Exhibit 53 - Redbank Valley Trail System

Exhibit 55 - Multimodal Facilities (South Bethlehem)

Exhibit 59 - Multimodal Facilities (Hawthorn)

Geometric Considerations

Design Criteria

The RT 28 Corridor has a functional classification of Regional Arterial. The Area System designation is Rural. There are five speed limit changes noted through the study area; 25 MPH, 35 MPH, 40 MPH, 45 MPH, and 55 MPH. Design Criteria charts considering new construction were developed the corridor following guidance found in PennDOT Publication 13M Design Manual Part 2 Highway Design. The design criteria data was used as a basis for comparison to the existing Route 28 Study Corridor roadway geometry and widths. These tables and related charts can be found in Appendix C.

Typical Sections

The typical section is consistent throughout the corridor. In general, the lane width is about 11' but can vary between 10' to 12 ' in width. The shoulders vary between 3 ' to 9 ' in width though the corridor. Most of the shoulders are 6^{\prime} in width or less and only in a few locations near major intersections do they get wider.

Horizontal and Vertical Geometry

Existing horizontal radii through the corridor were weighted against the current design criteria. Speeds up to 40 MPH were limited to a maximum super elevation rate of 6%. For the higher speed limits $45 \mathrm{MPH} \& 55 \mathrm{MPH}$ a slightly higher maximum super elevation rate of 8% is permitted with shoulder rounding. Based on these values the minimum design horizontal radii are shown in EXHIBIT 60. There are currently 18 notable areas with horizontal radii less than that current recommended design values (ExHIBIT 61 and ExHIBIT 62).

Exhibit 60 - Design Chart Horizontal Radii

Speed	Minimum Horizontal Radius (ft)
25 MPH	144
35 MPH	340
40 MPH	485
45 MPH	587
55 MPH	960

Exhibit 61 - Areas with Horizontal Radii Less Than Current Recommended Design Value

ID	Existing Radius (ft)	Speed	Min Radius (ft) For Speed	Location or Nearest Cross Street
1	700	55 MPH	>960	Jaraly Lane
2	600	55 MPH	>960	Iron Bridge Road / Lower Hayes Road
3	903	55 MPH	>960	Mechling Road
4	600	55 MPH	>960	SR 1035 (Oscar Road)
5	600	55 MPH	>960	W. Caldwell Road/ Kuhns Road
6	650	55 MPH	>960	Calhoun School Road
7	450	55 MPH	>960	T602 (Tipple Road)
8	500	55 MPH	>960	Wadding Road
9	45	25 MPH	>144	SR 1004 (Madison Road) / Kohlersburg Road
10	600	55 MPH	>960	Golf Link Road
11	250	35 MPH	>340	South Street
12	75	35 MPH	>340	South New Bethlehem; N Main/ W Broad
13	350	45 MPH	>587	Red Bank Valley Trail Crossing
14	450	45 MPH	>587	TR921
15	700	55 MPH	>960	Sandy Flat Road
16	780	55 MPH	>960	Moore Road
17	900	55 MPH	>960	Seneca Trail / Seldom Seen Road
18	80	35 MPH	>340	US 322

Exhibit 62 - Areas of Horizontal Deficiency

Existing vertical grades vary throughout the corridor. Many roadway sections have grades exceeding the desired current design maximum vertical grades of 5% (55 MPH) or 6% (up to 45 MPH). Excessive vertical grades not only make maintaining speeds difficult for larger truck traffic but also can limit sight distance for passing or entering roadways at intersections. In examining the corridor there are 10 notable areas with vertical grades exceeding the current maximum design grade (ExHIBIT 63 and ExHIBIT 64).

Exhibit 63 - Area with Vertical Grades Exceeding Maximum Design Grade

ID	Existing Grade (\%)	Speed	Max Grade (\%) For Speed	Location Nearest Cross Street
1	$7.6-8.4$	55 MPH	5	Jaraly Lane
2	$7.7-9.0$	55 MPH	5	Iron Bridge Road
3	8.9	55 MPH	5	SR 1035 (Oscar Road)
4	8.8	55 MPH	5	SR 1018
5	$7.3-8.5$	55 MPH	5	SR 1027
6	$7.1-9.2$	55 MPH	5	T602 (Tipple Road)
7	$6.9-8.8$	40 MPH	6	Near Distant, PA
8	$6.5-7.6$	55 MPH	5	Golf Link Road
9	6.8	55 MPH	5	SR 0536 (Mayport Road)

Exhibit 64 - Vertical Deficiency

Community Outreach

Public and stakeholder outreach is a critical component of understanding the local perspective of needs and opportunities along the Route 28 corridor.

Stakeholder Outreach

The Steering Committee identified key stakeholders including county commissioners, municipal leaders, business owners, freight haulers, school district staff, emergency service providers, and state police. Stakeholder meetings were held on February 26, 2020 in three locations to get a broad geographic spread of comments, and for ease of attendance. The morning meeting was held at the Jefferson County Conservation District office in Brookville, the afternoon meeting at the Redbank Valley Public Library in New Bethlehem, and the evening meeting at the Belmont Complex in Kittanning. Attendee list and meeting minutes can be found in APPENDIX D. Areas of concern identified through the stakeholder interviews were summarized into 24
 unique locations and mapped in

Exhibit 65.

Public Survey

In order to collect broad public input on the current conditions of the Route 28 Corridor from Kittanning to I-80, the study team utilized an online WikiMap survey. The survey was available at https://wikimapping.com/Route-28-Corridor-Study-Kittanning-to-I-80.html from Friday, February 7 through Friday, March 6, 2020. The Steering Committee member organizations promoted the survey through a press release, emails, and social media. Direct links to the mapping survey were also available on the study website (www.Route28CorridorStudy.com).

The interactive map allowed users to place points on a map of the corridor to identify areas of concern or opportunities for improvement related to vehicular, freight, bicycle, and pedestrian traffic. Each mode included targeted survey questions to collect

151 mimponate ir

 specific details about the concern or opportunity. A copy of all survey questions is included in APPENDIX E.

During the course of the survey period, 305 total points were placed by 151 unique users. A majority (269) of points were related to vehicular traffic. Nineteen (19) were related to freight; ten (10) related to pedestrians; and seven (7) related to bicycles. There were 730 log-ins to the WikiMap site which includes visitors who entered the site multiple times and those who entered the site but did not complete the surveys.

Areas of concern were summarized into 31 unique locations and mapped in ExHIBIT 66. The survey points revealed common areas of concern, some of which were corridor-wide. In each survey by travel mode, the public was prompted to select from several options for "What about this location causes you concern?"

ExHIBIT 67 displays the frequency of concerns for each mode. While each mode varied slightly in the options, the most common concerns were roadway safety; vehicle speeds, slow moving vehicles, intersection sight distance, and visibility of pedestrians and bicycles on the roadway.

The concerns highlighted by the Key Stakeholder interviews and the public survey comments aligned with the goals set out by the Study Team and Steering Committee early in the study process. Concerns and comments focused on the safety of the corridor, citing intersections with poor sight distance and speed differentials; the importance of ensuring connectivity of the corridor with other destinations and regions; and the improvement of operations by reducing congestion, especially when the corridor is used as a detour route. Public input was also vital to give local perspective and insight into corridor use related to special events which the study team cannot gather in other ways.

Both the stakeholders and general public identified specific concern locations which often overlapped with each other and with locations identified by other study analysis. The concerns and comments from the stakeholders and the general public were compiled with data and analysis of different aspects of the corridor and contributed to the identification of study concern areas which will be further studied during the next phases of the study.

Exhibit 65 - Stakeholder Concern Locations

Route 28 Kittanning to I-80 Regional Corridor Planning Study
Legend

Exhibit 67 - Summary of Public Survey Concern by Mode

Field Observations

Field View

Field observations were conducted on January $13^{\text {th }}, 2020$ to gather photographs, observations, and key measurements of current corridor conditions. Refer to APPENDIX F for detailed notes and images. The examined areas were identified by the Steering Committee or through desktop research prior to field work. In general, many of these locations identified by the Steering Committee have limited sight distance due to the horizontal and vertical curvature of the roadway. There are also locations of tight geometry that are difficult for large vehicles to navigate, with evidence of overtracking and sign hits throughout the corridor. Speed differentials were noticeable, with a spectrum ranging from speeding in excess of the 55 mph posted speed limit, aggressive passing behavior, while other vehicles were traveling $10-15 \mathrm{mph}$ below the speed limit.

EXHIBIT 68 shows the locations of observations, which included:

- Redbank Valley Trail
- Downtown New Bethlehem
- 15 mph Curve in South Bethlehem
- Distant
- Signage
- Trucks and freight
- Retroreflectivity
- Speeds
- Sight Distance and Geometry at:
o Sloan Hill Road
o SR 1035 (Oscar Road)
o SR 1004 (Kohlersburg/Madison Road)
o SR 1025 (Putneyville Road)
o SR 0536 (Mayport Road)
o South Main Street
o SR 1028 (Anderson Creek Road)
o Poverty Hill Road
o Toadtown Road/Anderson Road/Creek Street

- SR 28 guiderail erosion at various locations

Exhibit 68 - Field Observation Locations

Route 28 Kittanning to I-80 Regional Corridor Planning Study
Legend

| \square | County Boundary |
| :--- | :--- | :--- |
| Municipal Boundary | |
| Route 28 Study Corridor | |
| State Routes | Observation |
| | |

Conclusion

This Existing Conditions Report is a culmination of data research including previous studies, field observations, surveys of stakeholders and public input. The corridor geometry was examined to compare the existing conditions against current roadway design criteria standards. Traffic operations were observed and modeled through the project area to identify any areas of substandard traffic flow. All collected data was weighed equally and utilized to identify specific areas of concern throughout the corridor.

These areas were compiled into a single list and assigned a priority based on the number of categories where the location was found. The areas that received the highest priority will be further evaluated in the future conditions portion of this study.

The study team will develop conceptual improvements to address the safety, geometric and operational concerns at these locations. Conceptual improvements will be organized into short-, medium- and long-term improvements which can be programmed and implemented by the appropriate agency as resources and funding allow.

APPENDIX A Cost Estimate

	Michael Baker's 1994 Study		McCormick Taylor's 2020 Study Update	
Item	$\begin{gathered} \text { Cost/Mile } \\ (1994) \end{gathered}$	35 Miles (1994)	Cost/Mile (2020)	35 Miles (2020)
Clearing and Grubbing	\$150,000	\$5,250,000	\$150,000 1a	\$5,250,000
Roadway Excavation	\$3,000,000	\$105,000,000	\$3,567,000 2 a	\$124,845,000
Pavement, Shoulders, Curbs	\$3,200,000	\$112,000,000	\$4,460,000 3a	\$156,100,000
Drainage	\$900,000	\$31,500,000	\$1,200,000 4a	\$42,000,000
Guiderail and Barrier	\$70,000	\$2,450,000	\$132,000 5a	\$4,620,000
Right-of-Way Fence	\$110,000	\$3,850,000	\$158,400 6 a	\$5,544,000
Landscaping	\$130,000	\$4,550,000	\$217,545 7a	\$7,614,075
Temporary Traffic Control	\$210,000	\$7,350,000	\$351,418 8a	\$12,299,630
Utility Relocations	\$200,000	\$7,000,000	\$334,684 9a	\$11,713,940
Bridges, Box and Arch Culverts	\$3,900,000	\$136,500,000	\$6,526,331 10a	\$228,421,585
Signalization and Signing	\$30,000	\$1,050,000	\$50,203 11a	\$1,757,105
Pavement Markings and Delineators	\$20,000	\$700,000	\$33,469 12a	\$1,171,415
Erosion and Sedimentation Control	\$250,000	\$8,750,000	\$418,355 13a	\$14,642,425
Miscellaneous	\$400,000	\$14,000,000	\$669,368 14a	\$23,427,880
Mobilization/Field Office	\$450,000	\$15,750,000	\$753,039 15a	\$26,356,365
Stormwater Management	-	-	\$418,355 16a	\$14,642,425
Subtotal		\$455,700,000		\$680,405,845
Design Engineering (10\%)		\$45,570,000		\$68,040,585 17a
Construction Engineering (5\%)		\$22,785,000	(10\%)	\$68,040,585 18a
Subtotal		\$524,055,000		\$816,487,014
Right-of-Way		\$26,202,750		\$40,824,351 19a
TOTAL		\$550,257,750		\$857,311,365

1a. Assume same lump sum cost per mile from previous Baker Study
$\$ 150,000$ per mile $\times 35$ miles $=\$ 5,250,000$
2a. $\$ 240$ per $C Y$
Assume added pavement widening of $38 \mathrm{ft}(2 \times 11 \mathrm{ft}$ lanes $+2 \times 8 \mathrm{ft}$ shoulders $=38 \mathrm{ft})$
Assume pavement depth of 2 ft
Assume excavation cost will also include potential for rock excavation, any geotechnical treatments or shoring as needed
$\$ 240$ per cy $\times 1$ cy / 27 cf $\times 38 \mathrm{ft} \times 2 \mathrm{ft} \times 5280 \mathrm{ft} /$ mile $=\$ 3,566,933.33 \sim$ use $\$ 3,567,000$ per mile $\$ 3,567,000$ per mile $\times 35$ miles $=\$ 124,845,000$

3a. $\$ 200$ per $S Y$
Assume pavement will include all paving materials, subbase, underdrain, curb or barrier if needed Assume added pavement width of $38 \mathrm{ft}(2 \times 11 \mathrm{ft}$ lanes $+2 \times 8 \mathrm{ft}$ shoulders $=38 \mathrm{ft})$
$\$ 200 \times 1$ sy / $9 \mathrm{ft} \times 38 \mathrm{ft} \times 5280 \mathrm{ft} /$ mile $=\$ 4,458,666.66 \sim$ use $\$ 4,460,000$ per mile
$\$ 4,460,000$ per mile $\times 35$ miles $=\$ 156,100,000$
4a. $\$ 100$ per LF of pipe on each side of the road, 1 inlet every 150 If on each side of road $5280 / 150=35.2$ inlets per mile \sim use 36 inlets each side $\times 2=72$ inlets $\times \$ 2000 /$ inlet $=\$ 144,000$ $\$ 100 /$ If $\times 2$ sides $\times 5280 \mathrm{ft}=\$ 1,056,000$
$\$ 1,056,000+\$ 144,000=\$ 1,200,000$ cost per mile $\times 35$ miles $=\$ 42,000,000$
5a. $\$ 25$ per LF $\$ 25 \times 5280 \mathrm{ft} / \mathrm{mile}=\$ 132,000 \times 35$ miles $=\$ 4,620,000$
6a. $\$ 30$ per LF $\quad \$ 30 \times 5280$ If $/$ mile $=\$ 158,400 \times 35$ miles $=\$ 5,544,000$
7a. to 15 a. Escalation of cost at a rate of 2% per year for 26 years.
16a. Used same amount as Erosion and Sedimentation Control.
17a. 10% of first subtotal construction costs
18a. 10% of first subtotal construction costs
19 a. 5% of second subtotal construction costs

APPENDIX B

Highway Capacity Analysis

| $4-4$ | -1 | 4 |
| :---: | :---: | :---: | :---: |
| 4 | 4 | 4 |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	F		${ }^{7}$	\uparrow		${ }^{7}$	4	「	${ }^{1}$	F	
Traffic Volume (veh/h)	28	41	10	205	87	16	7	176	159	29	303	71
Future Volume (veh/h)	28	41	10	205	87	16	7	176	159	29	303	71
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1632	1593	1593	1529	1555	1555	1672	1672	1646	1247	1299	1299
Adj Flow Rate, veh/h	34	49	0	247	105	0	8	212	0	35	365	0
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh, \%	4	7	7	9	7	7	14	14	16	17	13	13
Cap, veh/h	42	90		276	337		6	622		33	492	
Arrive On Green	0.03	0.06	0.00	0.19	0.22	0.00	0.00	0.37	0.00	0.03	0.38	0.00
Sat Flow, veh/h	1554	1593	0	1456	1555	0	1593	1672	1395	1188	1299	0
Grp Volume(v), veh/h	34	49	0	247	105	0	8	212	0	35	365	0
Grp Sat Flow(s), veh/h/ln	1554	1593	0	1456	1555	0	1593	1672	1395	1188	1299	0
Q Serve(g_s), s	1.7	2.3	0.0	12.9	4.4	0.0	0.3	7.1	0.0	2.2	19.0	0.0
Cycle Q Clear(g_c), s	1.7	2.3	0.0	12.9	4.4	0.0	0.3	7.1	0.0	2.2	19.0	0.0
Prop In Lane	1.00		0.00	1.00		0.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	42	90		276	337		6	622		33	492	
V/C Ratio(X)	0.81	0.54		0.89	0.31		1.32	0.34		1.07	0.74	
Avail Cap(c_a), veh/h	418	275		395	337		273	1035		193	771	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	37.8	35.9	0.0	30.9	25.7	0.0	38.9	17.7	0.0	38.0	21.0	0.0
Incr Delay (d2), s/veh	29.4	5.0	0.0	16.9	0.5	0.0	280.3	1.2	0.0	91.6	7.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.0	1.0	0.0	5.5	1.6	0.0	0.6	2.6	0.0	1.4	6.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	67.3	40.9	0.0	47.8	26.3	0.0	319.2	18.8	0.0	129.6	28.7	0.0
LnGrp LOS	E	D		D	C		F	B		F	C	
Approach Vol, veh/h		83	A		352	A		220	A		400	A
Approach Delay, s/veh		51.7			41.4			29.7			37.5	
Approach LOS		D			D			C			D	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	8.5	36.7	21.6	11.4	7.9	37.2	9.1	23.9
Change Period (Y+Rc), s	* 5.8	7.1	6.3	6.5	7.1	7.1	6.5	6.5
Max Green Setting (Gmax), s	$* 13$	48.9	21.7	14.0	13.9	46.9	21.5	14.0
Max Q Clear Time (g_c+I1), s	4.2	9.1	14.9	4.3	2.3	21.0	3.7	6.4
Green Ext Time (p_c), s	0.0	6.1	0.4	0.1	0.0	9.2	0.0	0.1

Intersection Summary

HCM 6th Ctrl Delay	38.3
HCM 6th LOS	D

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	3					
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	个		MF	
Traffic Vol, veh/h	8	143	198	0	81	19
Future Vol, veh/h	8	143	198	0	81	19
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	7	-6	-	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	25	13	16	0	6	5
Mvmt Flow	9	164	228	0	93	22

Intersection													
Int Delay, s/veh	2.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢		*	\uparrow			\uparrow			\&		
Traffic Vol, veh/h	2	318	2	38	252	5	3	0	79	5	1	1	
Future Vol, veh/h	2	318	2	38	252	5	3	0	79	5	1	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	120	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	-5	-	-	3	-	-	-7	-	-	7	-	
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78	
Heavy Vehicles, \%	50	9	50	3	14	0	67	0	6	20	0	0	
Mvmt Flow	3	408	3	49	323	6	4	0	101	6	1	1	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	\uparrow			\&			\&			\&	
Traffic Volume (veh/h)	127	223	2	1	182	85	1	2	1	146	4	86
Future Volume (veh/h)	127	223	2	1	182	85	1	2	1	146	4	86
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1418	1557	1557	1519	1519	1519	1028	1028	1028	1685	1685	1685
Adj Flow Rate, veh/h	163	286	3	1	233	109	1	3	1	187	5	110
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Percent Heavy Veh, \%	16	5	5	8	8	8	50	50	50	0	0	0
Cap, veh/h	464	803	8	69	297	139	113	194	56	334	22	141
Arrive On Green	0.12	0.52	0.50	0.28	0.30	0.28	0.27	0.29	0.29	0.27	0.29	0.27
Sat Flow, veh/h	1350	1538	16	1	979	456	106	674	195	777	78	490
Grp Volume(v), veh/h	163	0	289	343	0	0	5	0	0	302	0	0
Grp Sat Flow(s),veh/h/ln	1350	0	1554	1436	0	0	975	0	0	1345	0	0
Q Serve(g_s), s	3.9	0.0	5.8	0.0	0.0	0.0	0.0	0.0	0.0	10.3	0.0	0.0
Cycle Q Clear(g_c), s	3.9	0.0	5.8	11.8	0.0	0.0	0.2	0.0	0.0	11.1	0.0	0.0
Prop In Lane	1.00		0.01	0.00		0.32	0.20		0.20	0.62		0.36
Lane Grp Cap(c), veh/h	464	0	811	477	0	0	344	0	0	472	0	0
V/C Ratio(X)	0.35	0.00	0.36	0.72	0.00	0.00	0.01	0.00	0.00	0.64	0.00	0.00
Avail Cap(c_a), veh/h	579	0	1387	886	0	0	618	0	0	873	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	8.6	0.0	7.4	17.0	0.0	0.0	13.5	0.0	0.0	17.7	0.0	0.0
Incr Delay (d2), s/veh	0.5	0.0	0.3	2.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.0	0.0	1.6	3.8	0.0	0.0	0.0	0.0	0.0	3.4	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	9.0	0.0	7.7	19.1	0.0	0.0	13.5	0.0	0.0	19.1	0.0	0.0
LnGrp LOS	A	A	A	B	A	A	B	A	A	B	A	A
Approach Vol, veh/h		452			343			5			302	
Approach Delay, s/veh		8.1			19.1			13.5			19.1	
Approach LOS		A			B			B			B	

Timer - Assigned Phs	1	2	4	6	8
Phs Duration (G+Y+Rc), s	11.5	21.0	20.2	32.5	20.2
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0
Max Green Setting (Gmax), s	10.0	30.0	30.0	46.0	30.0
Max Q Clear Time (g_c+I1), s	5.9	13.8	2.2	7.8	13.1
Green Ext Time (p_c), s	0.2	1.2	0.0	1.1	1.1

Intersection Summary

HCM 6th Ctrl Delay 14.6
HCM 6th LOS B

Intersection													
Int Delay, s/veh	2.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			\$			\$		
Traffic Vol, veh/h	6	141	7	13	68	7	5	5	36	1	5	1	
Future Vol, veh/h	6	141	7	13	68	7	5	5	36	1	5	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	2	-	-	-2	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, \%	0	8	0	31	13	0	0	0	6	0	0	0	
Mvmt Flow	7	155	8	14	75	8	5	5	40	1	5	1	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&		${ }^{7}$	F		${ }^{7}$	4	7
Traffic Volume (veh/h)	52	92	16	11	82	214	19	137	21	152	99	152
Future Volume (veh/h)	52	92	16	11	82	214	19	137	21	152	99	152
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1665	1665	1665	2078	2078	2078	1707	1623	1623	1674	1575	1758
Adj Flow Rate, veh/h	58	102	0	12	91	0	21	152	0	169	110	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, \%	8	8	8	7	7	7	5	11	11	9	16	3
Cap, veh/h	193	220		115	385		545	413		586	544	
Arrive On Green	0.18	0.20	0.00	0.18	0.20	0.00	0.05	0.25	0.00	0.14	0.35	0.00
Sat Flow, veh/h	395	1100	0	112	1918	0	1626	1623	0	1594	1575	1490
Grp Volume(v), veh/h	160	0	0	103	0	0	21	152	0	169	110	0
Grp Sat Flow(s), veh/h/ln	1494	0	0	2030	0	0	1626	1623	0	1594	1575	1490
Q Serve(g_s), s	2.2	0.0	0.0	0.0	0.0	0.0	0.4	3.3	0.0	3.1	2.1	0.0
Cycle Q Clear(g_c), s	4.1	0.0	0.0	1.8	0.0	0.0	0.4	3.3	0.0	3.1	2.1	0.0
Prop In Lane	0.36		0.00	0.12		0.00	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	379	0		453	0		545	413		586	544	
V/C Ratio(X)	0.42	0.00		0.23	0.00		0.04	0.37		0.29	0.20	
Avail Cap(c_a), veh/h	990	0		1292	0		1256	1315		1138	1276	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	15.5	0.0	0.0	14.6	0.0	0.0	10.6	13.2	0.0	9.0	9.9	0.0
Incr Delay (d2), s/veh	1.1	0.0	0.0	0.4	0.0	0.0	0.0	0.8	0.0	0.4	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.3	0.0	0.0	0.8	0.0	0.0	0.1	0.9	0.0	0.8	0.6	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	16.6	0.0	0.0	14.9	0.0	0.0	10.7	14.0	0.0	9.4	10.2	0.0
LnGrp LOS	B	A		B	A		B	B		A	B	
Approach Vol, veh/h		160	A		103	A		173	A		279	A
Approach Delay, s/veh		16.6			14.9			13.6			9.7	
Approach LOS		B			B			B			A	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	12.0	17.0	14.2	8.1	20.9	14.2
Change Period (Y+Rc), s	7.0	7.0	6.5	7.0	7.0	6.5
Max Green Setting (Gmax), s	20.0	34.0	26.0	20.0	34.0	26.0
Max Q Clear Time (g_c+11), s	5.1	5.3	6.1	2.4	4.1	3.8
Green Ext Time (p_c), s	0.7	0.7	0.7	0.0	0.5	0.4

Intersection Summary

HCM 6th Ctrl Delay	12.9
HCM 6th LOS	B

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	\mathbf{F}		Mr	
Traffic Vol, veh/h	2	254	306	22	1	1
Future Vol, veh/h	2	254	306	22	1	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	-9	9	-	-10	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	0	9	6	9	0	0
Mvmt Flow	2	289	348	25	1	1

Major/Minor	Major1	Major2			Minor2	
Conflicting Flow All	373	0	-	0	654	361
\quad Stage 1	-	-	-	-	361	-
Stage 2	-	-	-	-	293	-
Critical Hdwy	4.3	-	-	-	4.4	5.2
Critical Hdwy Stg 1	-	-	-	-	3.4	-
Critical Hdwy Stg 2	-	-	-	-	3.4	-
Follow-up Hdwy	3	-	-	-	3	3.1
Pot Cap-1 Maneuver	894	-	-	-	700	802
\quad Stage 1	-	-	-	-	988	-
\quad Stage 2	-	-	-	-	1026	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	894	-	-	-	698	802
Mov Cap-2 Maneuver	-	-	-	-	698	-
Stage 1	-	-	-	-	985	-
Stage 2	-	-	-	-1026	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.1	0	9.8
HCM LOS			A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	894	-	-	-746	
HCM Lane V/C Ratio	0.003	-	-	-0.003	
HCM Control Delay (s)	9	0	-	-	9.8
HCM Lane LOS	A	A	-	-	A
HCM 95th \%tile Q(veh)	0	-	-	-	0

HCM LOS B

Minor Lane/Major Mvmt	NBT	NBR EBLn1	SBL	SBT
Capacity (veh/h)	-	-911	1110	-
HCM Lane V/C Ratio	-	-0.223	0.004	-
HCM Control Delay (s)	-	-10.1	8.3	0
HCM Lane LOS	-	-	B	A
HCM 95th \%tile Q(veh)	-	-	0.9	0

Intersection	
Intersection Delay, s/veh $\quad 7.1$	
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\hat{F}			\uparrow			$\hat{\beta}$	
Traffic Vol, veh/h	3	0	82	0	34	7	8	0	0	0	18	0
Future Vol, veh/h	3	0	82	0	34	7	8	0	0	0	18	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, \%	0	0	7	0	15	0	25	0	0	0	0	0
Mvmt Flow	3	0	94	0	39	8	9	0	0	0	21	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB				SB	
Opposing Approach	WB				EB		SB				NB	
Opposing Lanes	1				1		1				1	
Conflicting Approach Left	SB				NB		EB				WB	
Conflicting Lanes Left	1				1		1				1	
Conflicting Approach Right	NB				SB		WB				EB	
Conflicting Lanes Right	1				1		1				1	
HCM Control Delay	6.8				7.4		7.9				7.3	
HCM LOS	A				A		A				A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	100%	4%	0%	0%
Vol Thu, \%	0%	0%	83%	100%
Vol Right, \%	0%	96%	17%	0%
Sign Control	8 Stop	Stop	Stop	Stop
Traffic Vol by Lane	8	85	41	18
LT Vol	8	3	0	0
Through Vol	0	0	34	18
RT Vol	0	82	7	0
Lane Flow Rate	9	98	47	21
Geometry Grp	1	1	1	1
Degree of Util (X)	0.012	0.093	0.055	0.024
Departure Headway (Hd)	4.793	3.414	4.177	4.157
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	745	1046	857	858
Service Time	2.835	1.445	2.202	2.197
HCM Lane V/C Ratio	0.012	0.094	0.055	0.024
HCM Control Delay	7.9	6.8	7.4	7.3
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0	0.3	0.2	0.1

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	207	0	361	204
Stage 1		-		-	204	
Stage 2		-			157	
Critical Hdwy		-	4.9	-	8.1	6.4
Critical Hdwy Stg 1		-	-	-	4.4	
Critical Hdwy Stg 2		-		-	4.4	
Follow-up Hdwy	-	-	3.5	-	3	3.4
Pot Cap-1 Maneuver		-	857	-	617	810
Stage 1		-		-	1017	
Stage 2		-		-	1057	
Platoon blocked, \%		-				
Mov Cap-1 Maneuver		-	857	-	616	810
Mov Cap-2 Maneuver		-	-	-	616	
Stage 1		-		-	1017	
Stage 2	-	-	-	-	1056	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.1	10.6
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	647	-	-857	-	
HCM Lane V/C Ratio	0.01	-	-0.002	-	
HCM Control Delay (s)	10.6	-	-	9.2	0
HCM Lane LOS	B	-	-	A	A
HCM 95th \%tile Q(veh)	0	-	-	0	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1 /}$	\uparrow		${ }^{1 /}$	\uparrow		${ }^{1}$	4	「	${ }^{*}$	\uparrow	
Traffic Volume (veh/h)	94	107	10	186	65	30	14	418	296	17	257	36
Future Volume (veh/h)	94	107	10	186	65	30	14	418	296	17	257	36
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1684	1645	1645	1542	1619	1619	1581	1764	1790	1389	1324	1324
Adj Flow Rate, veh/h	103	118	0	204	71	0	15	459	0	19	282	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, \%	0	3	3	8	2	2	21	7	5	6	11	11
Cap, veh/h	121	150		230	276		17	688		20	500	
Arrive On Green	0.08	0.09	0.00	0.16	0.17	0.00	0.01	0.39	0.00	0.02	0.38	0.00
Sat Flow, veh/h	1604	1645	0	1469	1619	0	1506	1764	1517	1323	1324	0
Grp Volume(v), veh/h	103	118	0	204	71	0	15	459	0	19	282	0
Grp Sat Flow(s), veh/h/ln	1604	1645	0	1469	1619	0	1506	1764	1517	1323	1324	0
Q Serve(g_s), s	5.1	5.6	0.0	10.9	3.0	0.0	0.8	17.1	0.0	1.1	13.5	0.0
Cycle Q Clear(g_c), s	5.1	5.6	0.0	10.9	3.0	0.0	0.8	17.1	0.0	1.1	13.5	0.0
Prop In Lane	1.00		0.00	1.00		0.00	1.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	121	150		230	276		17	688		20	500	
V/C Ratio(X)	0.85	0.79		0.89	0.26		0.87	0.67		0.94	0.56	
Avail Cap(c_a), veh/h	361	340		335	284		253	1047		227	753	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	36.5	35.5	0.0	33.0	28.8	0.0	39.4	20.1	0.0	39.3	19.7	0.0
Incr Delay (d2), s/veh	15.2	8.7	0.0	17.5	0.5	0.0	68.9	4.0	0.0	77.9	3.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	2.4	2.5	0.0	4.7	1.1	0.0	0.6	7.0	0.0	0.8	4.2	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	51.7	44.3	0.0	50.5	29.2	0.0	108.3	24.1	0.0	117.2	23.3	0.0
LnGrp LOS	D	D		D	C		F	C		F	C	
Approach Vol, veh/h		221	A		275	A		474	A		301	A
Approach Delay, s/veh		47.7			45.0			26.8			29.2	
Approach LOS		D			D			C			C	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	7.5	38.7	19.3	14.3	8.5	37.7	13.0	20.6
Change Period (Y+Rc), s	* 5.8	7.1	6.3	6.5	7.1	7.1	6.5	6.5
Max Green Setting (Gmax), s	$* 14$	47.9	18.7	17.0	13.9	45.9	18.5	14.5
Max Q Clear Time (g_c+I1), s	3.1	19.1	12.9	7.6	2.8	15.5	7.1	5.0
Green Ext Time (p_c), s	0.0	12.5	0.3	0.2	0.0	7.5	0.2	0.1

Intersection Summary

HCM 6th Ctrl Delay	34.9
HCM 6th LOS	C

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	2					
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\mathbf{A}	个		Mr	
Traffic Vol, veh/h	23	272	166	0	47	16
Future Vol, veh/h	23	272	166	0	47	16
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	7	-6	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	9	6	13	0	6	13
Mvmt Flow	25	292	178	0	51	17

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	178	0	-	0	520	178	
\quad Stage 1	-	-	-	-	178	-	
Stage 2	-	-	-	-	342	-	
Critical Hdwy	4.9	-	-	-	8.1	6.4	
Critical Hdwy Stg 1	-	-	-	-	5.46	-	
Critical Hdwy Stg 2	-	-	-	-	5.46	-	
Follow-up Hdwy	3.5	-	-	-	3	3.4	
Pot Cap-1 Maneuver	879	-	-	0	459	838	
\quad Stage 1	-	-	-	0	986	-	
Stage 2	-	-	-	0	821	-	
Platoon blocked, \%		-	-				
Mov Cap-1 Maneuver	879	-	-	-	443	838	
Mov Cap-2 Maneuver	-	-	-	-	443	-	
Stage 1	-	-	-	-	952	-	
Stage 2	-	-	-	-	821	-	

Approach	NB	SB	SE
HCM Control Delay, s	0.7	0	13.3
HCM LOS			B

Minor Lane/Major Mvmt	NBL	NBT SELn1	SBT	
Capacity (veh/h)	879	-	503	-
HCM Lane V/C Ratio	0.028	-	0.135	-
HCM Control Delay (s)	9.2	0	13.3	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0.1	-	0.5	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow			\&			\uparrow			\uparrow	
Traffic Volume (veh/h)	117	255	2	1	258	112	5	4	4	170	6	143
Future Volume (veh/h)	117	255	2	1	258	112	5	4	4	170	6	143
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	0.99		0.99	1.00		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1481	1557	1557	1582	1582	1582	1685	1685	1685	1685	1685	1685
Adj Flow Rate, veh/h	122	266	2	1	269	117	5	4	4	177	6	149
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \%	11	5	5	3	3	3	0	0	0	0	0	0
Cap, veh/h	426	788	6	65	340	147	219	170	133	303	27	187
Arrive On Green	0.09	0.51	0.49	0.31	0.33	0.31	0.29	0.31	0.31	0.29	0.31	0.29
Sat Flow, veh/h	1410	1543	12	1	1041	451	418	548	429	657	86	605
Grp Volume(v), veh/h	122	0	268	387	0	0	13	0	0	332	0	0
Grp Sat Flow(s),veh/h/ln	1410	0	1554	1493	0	0	1396	0	0	1349	0	0
Q Serve(g_s), s	2.9	0.0	5.7	0.0	0.0	0.0	0.0	0.0	0.0	11.6	0.0	0.0
Cycle Q Clear(g_c), s	2.9	0.0	5.7	13.4	0.0	0.0	0.3	0.0	0.0	12.8	0.0	0.0
Prop In Lane	1.00		0.01	0.00		0.30	0.38		0.31	0.53		0.45
Lane Grp Cap(c), veh/h	426	0	794	526	0	0	496	0	0	492	0	0
V/C Ratio(X)	0.29	0.00	0.34	0.74	0.00	0.00	0.03	0.00	0.00	0.67	0.00	0.00
Avail Cap(c_a), veh/h	571	0	1312	868	0	0	827	0	0	822	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	9.0	0.0	8.1	17.3	0.0	0.0	13.5	0.0	0.0	18.1	0.0	0.0
Incr Delay (d2), s/veh	0.4	0.0	0.2	2.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.8	0.0	1.6	4.5	0.0	0.0	0.1	0.0	0.0	4.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	9.4	0.0	8.3	19.3	0.0	0.0	13.5	0.0	0.0	19.7	0.0	0.0
LnGrp LOS	A	A	A	B	A	A	B	A	A	B	A	A
Approach Vol, veh/h		390			387			13			332	
Approach Delay, s/veh		8.6			19.3			13.5			19.7	
Approach LOS		A			B			B			B	

Timer - Assigned Phs	1	2	4	6	8
Phs Duration (G+Y+Rc), s	10.3	23.2	22.2	33.5	22.2
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0
Max Green Setting (Gmax), s	10.0	30.0	30.0	46.0	30.0
Max Q Clear Time (g_c+I1), s	4.9	15.4	2.3	7.7	14.8
Green Ext Time (p_c), s	0.1	1.4	0.0	1.0	1.2

Intersection Summary

HCM 6th Ctrl Delay 15.6

HCM 6th LOS

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			\uparrow			\uparrow	
Traffic Vol, veh/h	1	140	36	30	165	14	39	12	18	10	9	6
Future Vol, veh/h	1	140	36	30	165	14	39	12	18	10	9	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	6	-	-	-2	-	-	-3	-	-	12	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, \%	0	9	8	7	8	0	10	0	6	20	11	0
Mvmt Flow	1	169	43	36	199	17	47	14	22	12	11	7

Intersection													
Int Delay, s/veh	4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\uparrow			\&			\uparrow		
Traffic Vol, veh/h	3	1	2	106	2	35	1	122	36	19	177	5	
Future Vol, veh/h	3	1	2	106	2	35	1	122	36	19	177	5	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control Star	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	2	-	-	-1	-	-	1	-	-	-1	-	
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83	
Heavy Vehicles, \%	0	0	0	3	0	3	0	12	0	5	8	0	
Mvmt Flow	4	1	2	128	2	42	1	147	43	23	213	6	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\$		${ }^{7}$	F		${ }^{7}$	4	「
Traffic Volume (veh/h)	67	147	28	30	137	270	24	122	16	234	148	64
Future Volume (veh/h)	67	147	28	30	137	270	24	122	16	234	148	64
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1764	1764	1764	2167	2167	2167	1665	1637	1637	1758	1674	1730
Adj Flow Rate, veh/h	73	160	0	33	149	0	26	133	0	254	161	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	1	1	1	1	1	1	8	10	10	3	9	5
Cap, veh/h	184	269		140	411		487	380		645	601	
Arrive On Green	0.20	0.22	0.00	0.20	0.22	0.00	0.05	0.23	0.00	0.18	0.36	0.00
Sat Flow, veh/h	381	1224	0	228	1870	0	1586	1637	0	1674	1674	1466
Grp Volume(v), veh/h	233	0	0	182	0	0	26	133	0	254	161	0
Grp Sat Flow(s),veh/h/ln	1605	0	0	2098	0	0	1586	1637	0	1674	1674	1466
Q Serve(g_s), s	2.8	0.0	0.0	0.0	0.0	0.0	0.6	3.2	0.0	4.6	3.2	0.0
Cycle Q Clear(g_c), s	6.2	0.0	0.0	3.4	0.0	0.0	0.6	3.2	0.0	4.6	3.2	0.0
Prop In Lane	0.31		0.00	0.18		0.00	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	419	0		507	0		487	380		645	601	
V/C Ratio(X)	0.56	0.00		0.36	0.00		0.05	0.35		0.39	0.27	
Avail Cap(c_a), veh/h	1112	0		1408	0		1108	1210		1088	1237	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	16.9	0.0	0.0	15.8	0.0	0.0	12.3	15.2	0.0	8.7	10.8	0.0
Incr Delay (d2), s/veh	1.6	0.0	0.0	0.6	0.0	0.0	0.1	0.8	0.0	0.6	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	2.2	0.0	0.0	1.6	0.0	0.0	0.2	1.0	0.0	1.3	1.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	18.5	0.0	0.0	16.4	0.0	0.0	12.4	16.0	0.0	9.3	11.1	0.0
LnGrp LOS	B	A		B	A		B	B		A	B	
Approach Vol, veh/h		233	A		182	A		159	A		415	A
Approach Delay, s/veh		18.5			16.4			15.4			10.0	
Approach LOS		B			B			B			A	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	14.5	17.0	15.9	8.4	23.0	15.9
Change Period (Y+Rc), s	7.0	7.0	6.5	7.0	7.0	6.5
Max Green Setting (Gmax), s	20.0	34.0	31.0	20.0	34.0	31.0
Max Q Clear Time (g_c+11), s	6.6	5.2	8.2	2.6	5.2	5.4
Green Ext Time (p_c), s	1.1	0.6	1.2	0.0	0.8	0.9

Intersection Summary

HCM 6th Ctrl Delay	14.1
HCM 6th LOS	B

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

											\checkmark	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	\uparrow	F					个 ${ }^{\text {a }}$		${ }^{7}$	个 \uparrow		
Traffic Volume (veh/h) 85	1	128	0	0	0	0	319	161	126	316	0	
Future Volume (veh/h) 85	1	128	0	0	0	0	319	161	126	316	0	
Initial Q (Qb), veh 0	0	0				0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.00		1.00				1.00		1.00	1.00		1.00	
Parking Bus, Adj 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No						No			No		
Adj Sat Flow, veh/h/ln 1878	1949	1878				0	1694	1694	1300	1812	0	
Adj Flow Rate, veh/h 96	1	144				0	358	181	142	355	0	
Peak Hour Factor 0.89	0.89	0.89				0.89	0.89	0.89	0.89	0.89	0.89	
Percent Heavy Veh, \% 5	0	5				0	4	4	43	7	0	
Cap, veh/h 239	2	207				0	1201	597	497	2514	0	
Arrive On Green 0.12	0.13	0.13				0.00	0.58	0.56	0.03	0.24	0.00	
Sat Flow, veh/h 1838	19	1591				0	2166	1035	1238	3534	0	
Grp Volume(v), veh/h 97	0	144				0	275	264	142	355	0	
Grp Sat Flow(s),veh/h/ln1857	0	1591				0	1609	1507	1238	1722	0	
Q Serve(g_s), s 3.4	0.0	6.1				0.0	6.1	6.4	2.8	5.7	0.0	
Cycle Q Clear(g_c), s 3.4	0.0	6.1				0.0	6.1	6.4	2.8	5.7	0.0	
Prop In Lane 0.99		1.00				0.00		0.69	1.00		0.00	
Lane Grp Cap(c), veh/h 241	0	207				0	928	870	497	2514	0	
V/C Ratio(X) 0.40	0.00	0.70				0.00	0.30	0.30	0.29	0.14	0.00	
Avail Cap(c_a), veh/h 271	0	232				0	928	870	643	2514	0	
HCM Platoon Ratio 1.00	1.00	1.00				1.00	1.00	1.00	0.33	0.33	1.00	
Upstream Filter(l) $\quad 1.00$	0.00	1.00				0.00	1.00	1.00	0.96	0.96	0.00	
Uniform Delay (d), s/veh 28.4	0.0	29.1				0.0	7.6	7.8	4.8	9.3	0.0	
Incr Delay (d2), s/veh 1.1	0.0	7.7				0.0	0.8	0.9	0.3	0.1	0.0	
	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Delay(d3),s/veh 0.0 \%ile BackOfQ(50%), veh/lif. 4	0.0	2.5				0.0	1.9	1.9	0.5	1.5	0.0	
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh 29.5	0.0	36.8				0.0	8.4	8.7	5.1	9.4	0.0	
LnGrp LOS C	A	D				A	A	A	A	A	A	
Approach Vol, veh/h	241						539			497		
Approach Delay, s/veh 33.9	33.9						8.5			8.2		
Approach LOS	C						A			A		
Timer - Assigned Phs 1	2		4		6							
Phs Duration (G+Y+Rc), $\mathrm{B0} 0.7$	45.4		13.9		56.1							
Change Period (Y+RC), s 6.0	6.0		* 5.8		6.0							
Max Green Setting (Gmaxs, ©	30.0		*9.2		49.0							
Max Q Clear Time ($\mathrm{g}_{2} \mathrm{c}$ +14, $\mathrm{S}_{\text {\% }}$	8.4		8.1		7.7							
Green Ext Time (p_c), s 0.3	8.9		0.1		7.8							
Intersection Summary												
HCM 6th Ctrl Delay		13.2										
HCM 6th LOS		B										
Notes												

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	512	0	-	0	1180	506
Stage 1	-	-	-	-	506	-
Stage 2	-	-	-	-	674	-
Critical Hdwy	4.3	-	-	-	4.65	5.2
Critical Hdwy Stg 1	-	-	-	-	3.65	-
Critical Hdwy Stg 2	-	-	-	-	3.65	-
Follow-up Hdwy	3	-	-	-	3	3.1
Pot Cap-1 Maneuver	800	-	-	-	411	690
Stage 1	-	-	-	-	880	-
Stage 2	-	-	-	-	792	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	800	-	-	-	397	690
Mov Cap-2 Maneuver	-	-	-	-	397	-
Stage 1	-	-	-	-	851	-
Stage 2	-	-	-	-	792	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		13.4	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		800	-	-	-	434
HCM Lane V/C Ratio		0.021	-	-	-	0.015
HCM Control Delay (s)		9.6	0	-	-	13.4
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0.1	-	-	-	0

Major/Minor	Minor2	Majojor2						
Conflicting Flow All	313	433	86	-	0	0	240	0

HCM LOS B

Minor Lane/Major Mvmt	NBT	NBR EBLn1	SBL	SBT
Capacity (veh/h)	-	-849	994	-
HCM Lane V/C Ratio	-	-0.172	0.011	-
HCM Control Delay (s)	-	-10.1	8.7	0
HCM Lane LOS	-	-	B	A
HCM 95th \%tile Q(veh)	-	-	0.6	0
H				

Intersection	
Intersection Delay, s/veh $\quad 7.5$	
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			F			\uparrow			$\hat{\beta}$	
Traffic Vol, veh/h	0	49	17	0	90	15	17	6	0	0	14	3
Future Vol, veh/h	0	49	17	0	90	15	17	6	0	0	14	3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, \%	0	0	10	0	4	0	12	0	0	0	0	0
Mvmt Flow	0	53	18	0	97	16	18	6	0	0	15	3
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB			WB		NB				SB	
Opposing Approach		WB			EB		SB				NB	
Opposing Lanes		1			1		1				1	
Conflicting Approach Left		SB			NB		EB				WB	
Conflicting Lanes Left		1			1		1				1	
Conflicting Approach Right		NB			SB		WB				EB	
Conflicting Lanes Right		1			1		1				1	
HCM Control Delay		7.3			7.6		7.8				7.3	
HCM LOS		A			A		A				A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	74%	0%	0%	0%
Vol Thru, \%	26%	74%	86%	82%
Vol Right, \%	0%	26%	14%	18%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	23	66	105	17
LT Vol	17	0	0	0
Through Vol	6	49	90	14
RT Vol	0	17	15	3
Lane Flow Rate	25	71	113	18
Geometry Grp	1	1	1	1
Degree of Util (X)	0.031	0.077	0.126	0.021
Departure Headway (Hd)	4.583	3.904	4.01	4.129
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	772	911	891	855
Service Time	2.664	1.954	2.05	2.214
HCM Lane V/C Ratio	0.032	0.078	0.127	0.021
HCM Control Delay	7.8	7.3	7.6	7.3
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.1	0.2	0.4	0.1

Intersection						

HCM LOS B

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 NB
From/To	Oscar Road to Baum Pump Sta
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

Highway class C	Class 1		Peak hour factor, PHF	0.82	
Shoulder width	6.0	$f t$	\% Trucks and buses	13	\%
Lane width	11.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Rolling		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	100	\%
Up/down	-	\%	Access point density	13	/mi
Analysis directi	ion volume, Vd	220	veh/h		
Opposing directi	ion volume, Vo	403	veh/h		

Average Travel Speed

Direction Ana	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.7		1.4	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.917		0.951	
Grade adjustment factor, (note-1) fg	0.83		0.95	
Directional flow rate, (note-2) vi	353	pc / h	544	pc / h
Base percent time-spent-following, (note-4	e-4) BPTSFd	41.7	\%	
Adjustment for no-passing zones, fnp		36.4		
Percent time-spent-following, PTSFd		56.0	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	67	veh-mi
Peak-hour vehicle-miles of travel, VMT60	220	veh-mi
Peak 15-min total travel time, TT15	1.4	veh-h
Capacity from ATS, CdATS	1635	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1635	veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	46.8
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	56.0	C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^2]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 268.3
Effective width of outside lane, We 23.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.02
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 NB
From/To	Oscar Road to Baum Pump Sta
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.94 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 6.0 | ft | \% Trucks and buses | 6 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 1.0 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 13 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 542 veh/h
Opposing direction volume, Vo 310 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.2	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.988	0.965	
Grade adjustment factor, (note-1) fg	0.97	0.87	
Directional flow rate, (note-2) vi	602	pc/h	393
Base percent time-spent-following, (note-4)	BPTSFd	55.9	$\%$
Adjustment for no-passing zones, fnp		34.7	
Percent time-spent-following, PTSFd	76.9	$\%$	

Level of service, LOS	D		
Volume to capacity ratio, v/c	0.35		
Peak 15-min vehicle-miles of travel, VMT15	144	veh-mi	
Peak-hour vehicle-miles of travel, VMT60	542	veh-mi	
Peak 15-min total travel time, TT15	3.2	veh-h	
Capacity from ATS, CdATS	1669	veh/h	
Capacity from PTSF, CdPTSF	1700	veh/h	
Directional Capacity	1669	veh/h	
Passing Lane Analysis			
Total length of analysis segment, Lt		1.0	mi
Length of two-lane highway upstream of the passing	lane,	-	mi
Length of passing lane including tapers, Lpl		-	mi
Average travel speed, ATSd (from above)		45.3	mi / h
Percent time-spent-following, PTSFd (from above)		76.9	
Level of service, LOSd (from above)		D	

Average Travel speed with Passing Lane \qquad

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld

[^3]\qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 576.6
Effective width of outside lane, We 23.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.65
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 SB
From/To	Oscar Road to Baum Pump Sta
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

Highway class	Class	1			Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft		\% Trucks and buses	12	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$		
Segment length	1.0	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$		
Terrain type	Rolling		\% Recreational vehicles	0	$\%$		
Grade: Length	-	mi	\% No-passing zones	100	$\%$		
	Up/down	-	$\%$	Access point density	13	$/ \mathrm{mi}$	

Analysis direction volume, Vd 403 veh/h
Opposing direction volume, Vo 220 veh/h

Average Travel Speed

Direction Ana	Analysi		Opposing (o)		
PCE for trucks, ET	1.9			2.2	
PCE for RVs, ER	1.1			1.1	
Heavy-vehicle adj. factor, (note-5) fHV	$V 0.9$			0.874	
Grade adj. factor, (note-1) fg	0.9			0.78	
Directional flow rate, (note-2) vi	527	pc / h		351	
Free-Flow Speed from Field Measurement:					
Field measured speed, (note-3) S FM		-	mi / h		
Observed total demand, (note-3) V		-	veh/		
Estimated Free-Flow Speed:					
Base free-flow speed, (note-3) BFFS		60.0	mi / h		
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.4	mi / h		
Adj. for access point density, (note-3) fA	fA	3.3	mi / h		
Free-flow speed, FFSd		56.3	mi/h		
Adjustment for no-passing zones, fnp		3.3	mi / h		
Average travel speed, ATSd		46.2	mi / h		
Percent Free Flow Speed, PFFS		82.0	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	110	veh-mi
Peak-hour vehicle-miles of travel, VMT60	403	veh-mi
Peak 15-min total travel time, TT15	2.4	veh-h
Capacity from ATS, CdATS	1641	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1641	veh/h

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 1.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 46.2 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 72.2 | |
| Level of service, LoSd (from above) | D | |

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^4]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vol	438.0
Effective width of outside lane, we	23.00
Effective speed factor, St	4.79
Bicycle LoS Score, BLOS	6.81
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 SB
From/To	Oscar Road to Baum Pump Sta
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.82 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 6.0 | ft | \% Trucks and buses | 9 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 1.0 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 13 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 310 veh/h
Opposing direction volume, Vo 542 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.0	
PCE for RVs, ER		1.0	1.0
Heavy-vehicle adjustment factor, fHV	0.949	1.000	
Grade adjustment factor, (note-1) fg	0.89	0.98	
Directional flow rate, (note-2) vi	448	pc / h	674
Base percent time-spent-following, (note-4)	BPTSFd	49.8	$\%$
Adjustment for no-passing zones, fnp		31.8	
Percent time-spent-following, PTSFd	62.5	$\%$	

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	95	veh-mi
Peak-hour vehicle-miles of travel, VMT60	310	veh-mi
Peak 15-min total travel time, TT15	2.1	veh-h
Capacity from ATS, CdATS	1656	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1656	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$6.6 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	62.5	C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^5]\qquad

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, voL	378.0
Effective width of outside lane, we	23.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	5.49
Bicycle LOS	E

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 NB
From/To	Between Distant and South Beth
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.85 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 6.0 | ft | $\%$ Trucks and buses | 9 | $\%$ | |
| Lane width | 11.0 | ft | $\%$ Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.5 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 10 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 285 veh/h
Opposing direction volume, Vo 232 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.949	0.941	
Grade adjustment factor, (note-1) fg	0.87	0.84	
Directional flow rate, (note-2) vi	406	pc / h	345
Base percent time-spent-following, (note-4)	BPTSFd	42.7	$\%$
Adjustment for no-passing zones, fnp		46.8	
Percent time-spent-following, PTSFd	68.0	$\%$	

Level of service, LOS	D		
Volume to capacity ratio, v/c	0.20		
Peak 15-min vehicle-miles of travel, VMT15	42	veh-mi	
Peak-hour vehicle-miles of travel, VMT60	143	veh-mi	
Peak 15-min total travel time, TT15	0.9	veh-h	
Capacity from ATS, CdATS	1656	veh/h	
Capacity from PTSF, CdPTSF	1700	veh/h	
Directional Capacity	1656	veh/h	
Passing Lane Analysis			
Total length of analysis segment, Lt		0.5	mi
Length of two-lane highway upstream of the passing	lane,	u -	mi
Length of passing lane including tapers, Lpl		-	mi
Average travel speed, ATSd (from above)		47.5	mi/h
Percent time-spent-following, PTSFd (from above)		68.0	
Level of service, LOSd (from above)		D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld

[^6]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	335.3
Effective width of outside lane, we	23.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	5.43
Bicycle LOS	E

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 NB
From/To	Between Distant and South Beth
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft		\% Trucks and buses	8	$\%$
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Rolling		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	10	$/ \mathrm{mi}$

Analysis direction volume, Vd 332 veh/h
Opposing direction volume, Vo 312 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.954	0.954	
Grade adjustment factor, (note-1) fg	0.89	0.88	
Directional flow rate, (note-2) vi	444	pc/h	422
Base percent time-spent-following, (note-4)	BPTSFd	46.0	$\%$
Adjustment for no-passing zones, fnp		43.9	
Percent time-spent-following, PTSFd	68.5	$\%$	

Level of service, LOS	D		
Volume to capacity ratio, v/c	0.23		
Peak 15-min vehicle-miles of travel, VMT15	47	veh-mi	
Peak-hour vehicle-miles of travel, VMT60	166	veh-mi	
Peak 15-min total travel time, TT15	1.0	veh-h	
Capacity from ATS, CdATS	1661	veh/h	
Capacity from PTSF, CdPTSF	1700	veh/h	
Directional Capacity	1661	veh/h	
Passing Lane Analysis			
Total length of analysis segment, Lt		0.5	mi
Length of two-lane highway upstream of the passing	lane,	u -	mi
Length of passing lane including tapers, Lpl		-	mi
Average travel speed, ATSd (from above)		47.1	mi/h
Percent time-spent-following, PTSFd (from above)		68.5	
Level of service, LOSd (from above)		D	

Average Travel speed with Passing Lane \qquad

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl -

[^7]\qquad

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	377.3
Effective width of outside lane, we	23.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	5.12
Bicycle LOS	E

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 SB
From/To	Between Distant and South Beth
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.95	
Shoulder width	6.0	ft		\% Trucks and buses	13	$\%$
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Rolling		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	10	$/ \mathrm{mi}$

Analysis direction volume, Vd 232 veh/h
Opposing direction volume, Vo 285 veh/h

Average Travel Speed

Direction Ana	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.7		1.7	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.917		0.917	
Grade adjustment factor, (note-1) fg	0.82		0.85	
Directional flow rate, (note-2) vi	325	pc / h	385	
Base percent time-spent-following, (n ote-4	e-4) BPTSFd	36.1	\%	
Adjustment for no-passing zones, fnp		49.2		
Percent time-spent-following, PTSFd		58.6	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.15 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 31 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 116 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.6 | veh-h |
| Capacity from ATS, CdATS | 1635 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | veh/h |
| Directional Capacity | 1635 | veh/h |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.5	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	47.9 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	58.6	C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^8]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 23.00
Effective speed factor, St
Bicycle LOS Score, BLOS
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 SB
From/To	Between Distant and South Beth
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.89 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 6.0 | ft | \% Trucks and buses | 4 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.5 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 10 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 312 veh/h
Opposing direction volume, Vo 332 veh/h

Average Travel Speed

Level of Service and Other Performance Measures

| Level of service, LOS | D | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.21 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 44 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 156 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.9 | $\mathrm{veh}-\mathrm{h}$ |
| Capacity from ATS, CdATS | 1680 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1680 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.5	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$47.4 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	66.2	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^9]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 350.6
Effective width of outside lane, We 23.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.79
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 NB
From/To	Longview / Yearney
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.79 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | | \% Trucks and buses | 11 | $\%$ |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.6 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 4 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 258 veh/h
Opposing direction volume, Vo 236 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.7	
PCE for RVs, ER		1.0	1.0
Heavy-vehicle adjustment factor, fHV	0.938	0.929	
Grade adjustment factor, (note-1) fg	0.86	0.85	
Directional flow rate, (note-2) vi	405	pc / h	379
Base percent time-spent-following, (note-4)	BPTSFd	42.4	$\%$
Adjustment for no-passing zones, fnp		46.3	
Percent time-spent-following, PTSFd	66.3	$\%$	

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	49	veh-mi
Peak-hour vehicle-miles of travel, VMT60	155	veh-mi
Peak 15-min total travel time, TT15	1.0	veh-h
Capacity from ATS, CdATS	1646	veh/h
Capacity from PTSF, CdPTSF	1700	$v e h / h ~$
Directional Capacity	1646	$v e h / h$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.6	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	47.5	mi / h
Percent time-spent-following, PTSFd (from above)	66.3	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl -

[^10]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 326.6
Effective width of outside lane, We 15.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.75
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 NB
From/To	Longview / Yearney
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.83	
Shoulder width	4.0	ft	\% Trucks and buses	6	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.6	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Rolling		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	4	$/ \mathrm{mi}$

Analysis direction volume, Vd 228 veh/h
Opposing direction volume, Vo 274 veh/h

Average Travel Speed

Direction Ana	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.7		1.6	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.960		0.965	
Grade adjustment factor, (note-1) fg	0.84		0.87	
Directional flow rate, (note-2) vi	341	pc / h	393	
Base percent time-spent-following, (n ote-4	e-4) BPTSFd	38.4	\%	
Adjustment for no-passing zones, fnp		48.0		
Percent time-spent-following, PTSFd		60.7	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	41	veh-mi
Peak-hour vehicle-miles of travel, VMT60	137	veh-mi
Peak 15-min total travel time, TT15	0.9	veh-h
Capacity from ATS, CdATS	1669	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1669	$v e h / h$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.6	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	48.1	mi / h
Percent time-spent-following, PTSFd (from above)	60.7	C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^11]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 274.7
Effective width of outside lane, We 15.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.79
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 SB
From/To	Longview / Yearney
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

Highway class C	Class 1		Peak hour factor, PHF	0.86	
Shoulder width	4.0	$f t$	\% Trucks and buses	13	\%
Lane width	11.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Rolling		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	100	\%
Up/down	-	\%	Access point density	4	/mi
Analysis directi	ion volume, Vd	236	veh/h		
Opposing directi	ion volume, Vo	258	veh/h		

Average Travel Speed

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.17 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 41 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 142 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.9 | veh-h |
| Capacity from ATS, CdATS | 1635 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | veh/h |
| Directional Capacity | 1635 | veh/h |

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^12]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 274.4
Effective width of outside lane, We 15.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.55
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 SB
From/To	Longview / Yearney
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.88 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | \% Trucks and buses | 4 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.6 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 4 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 274 veh/h
Opposing direction volume, Vo 228 veh/h

Average Travel Speed

Direction Analysis(d)	Analysis(d)		Opposing (o)		
PCE for trucks, ET	2.1			2.2	
PCE for RVs, ER	1.1			1.1	
Heavy-vehicle adj. factor, (note-5) fHV	$V \quad 0.95$			0.954	
Grade adj. factor, (note-1) fg	0.8			0.80	
Directional flow rate, (note-2) vi	387	pc / h		339	
Free-Flow Speed from Field Measurement:					
Field measured speed, (note-3) S FM		-	mi / h		
Observed total demand, (note-3) V		-	veh/		
Estimated Free-Flow Speed:					
Base free-flow speed, (note-3) BFFS		60.0	mi / h		
Adj. for lane and shoulder width, (note-3)	-3) fLS	1.7	mi / h		
Adj. for access point density, (note-3) fA	fA	1.0	mi / h		
Free-flow speed, FFSd		57.3	mi/h		
Adjustment for no-passing zones, fnp		3.6	mi / h		
Average travel speed, ATSd		48.1	mi / h		
Percent Free Flow Speed, PFFS		84.0	\%		

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.6		1.7	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.977		0.973	
Grade adjustment factor,(note-1) fg	0.86		0.83	
Directional flow rate, (note-2) vi	371	pc/h	321	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	39.5	$\%$	
Adjustment for no-passing zones, fnp		50.4		
Percent time-spent-following, PTSFFd		66.5	$\%$	

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	47	veh-mi
Peak-hour vehicle-miles of travel, VMT60	164	veh-mi
Peak 15-min total travel time, TT15	1.0	veh-h
Capacity from ATS, CdATS	1680	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1680	veh/h

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 0.6 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 48.1 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 66.5 | |
| Level of service, LoSd (from above) | D | |

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^13]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 311.4
Effective width of outside lane, We 15.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.25
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 NB
From/To	Dewey Rd / SR 2001
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0		1.0
Heavy-vehicle adjustment factor, fHV	0.947		0.947
Grade adjustment factor,(note-1) fg	0.79		0.76
Directional flow rate, (note-2) vi	257	pc/h	
Base percent time-spent-following, (note-4)	BPTSFd	26.4	$\%$
Adjustment for no-passing zones, fnp		57.3	pc / h
Percent time-spent-following, PTSFFd		58.1	$\%$

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	43	veh-mi
Peak-hour vehicle-miles of travel, VMT60	135	veh-mi
Peak 15-min total travel time, TT15	0.9	veh-h
Capacity from ATS, CdATS	1664	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1664	veh/h

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 0.9 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 45.5 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 58.1 | |
| Level of service, LoSd (from above) | C | |

Average Travel Speed with Passing Lane \qquad

Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		mi
length of the passing lane for average travel speed, Ld	-	
Adj. factor for the effect of passing lane	-	
on average speed, fpl		
Average travel speed including passing lane, ATSpl	ercent free flow speed including passing lane, PFFSpl	0.0

Percent Time-Spent-Following with Passing Lane \qquad
$\begin{array}{ccc}\text { Downstream length of two-lane highway within effective length } & \\ \text { of passing lane for percent time-spent-following, Lde } & \text { - } & \text { mi } \\ \text { Length of two-lane highway downstream of effective length of } & \\ \text { the passing lane for percent time-spent-following, Ld } & \text { - } & \text { mi } \\ \text { Adj. factor for the effect of passing lane } & \\ \text { on percent time-spent-following, fpl } & \text { - } & \\ \text { Percent time-spent-following } \\ \text { including passing lane, PTSFpl }\end{array}$

[^14]\qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 25.00
Effective speed factor, St
4.79
Bicycle LOS Score, BLOS 3.94
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 NB
From/To	Dewey Rd / SR 2001
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.89	
Shoulder width	5.0	ft	\% Trucks and buses	9	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.9	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Rolling		\% Recreational vehicles	0	$\%$	
Grade: Length	-	mi	\% No-passing zones	87	$\%$	
	Up/down	-	$\%$	Access point density	20	$/ \mathrm{mi}$

Analysis direction volume, Vd 161 veh/h
Opposing direction volume, Vo 208 veh/h

Average Travel Speed

Direction Analysis(d)	Analysis(d)		Opposing (o)		
PCE for trucks, ET	2.4			2.2	
PCE for RVs, ER	1.1			1.1	
Heavy-vehicle adj. factor, (note-5) fHV	$V \quad 0.88$			0.903	
Grade adj. factor, (note-1) fg	0.7			0.78	
Directional flow rate, (note-2) vi	279	pc / h		332	
Free-Flow Speed from Field Measurement:					
Field measured speed, (note-3) S FM		-	mi / h		
Observed total demand, (note-3) V		-	veh/		
Estimated Free-Flow Speed:					
Base free-flow speed, (note-3) BFFS		60.0	mi / h		
Adj. for lane and shoulder width, (note-3)	-3) fLS	1.7	mi / h		
Adj. for access point density, (note-3) fA	fA	5.0	mi / h		
Free-flow speed, FFSd		53.3	mi/h		
Adjustment for no-passing zones, fnp		3.1	mi / h		
Average travel speed, ATSd		45.4	mi / h		
Percent Free Flow Speed, PFFS		85.2	\%		

evel of Ser		

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	41	veh-mi
Peak-hour vehicle-miles of travel, VMT60	145	veh-mi
Peak 15-min total travel time, TT15	0.9	veh-h
Capacity from ATS, CdATS	1656	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1656	veh/h

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 0.9 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 45.4 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 52.9 | |
| Level of service, LoSd (from above) | C | |

Average Travel Speed with Passing Lane \qquad

Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		mi
length of the passing lane for average travel speed, Ld	-	
Adj. factor for the effect of passing lane	-	
on average speed, fpl		
Average travel speed including passing lane, ATSpl	ercent free flow speed including passing lane, PFFSpl	0.0

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

Level of Service and Other Performance Measures with Passing Lane
 \qquad

Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	180.9
Effective width of outside lane, we	21.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	5.56
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 SB
From/To	Dewey Rd / SR 2001
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.69 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 5.0 | ft | | \% Trucks and buses | 10 | $\%$ |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.9 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 72 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 20 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 116 veh/h
Opposing direction volume, Vo 150 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8		1.7	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.926		0.935	
Grade adjustment factor,(note-1) fg	0.78		0.81	
Directional flow rate, (note-2) vi	233	pc/h	287	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	26.2	$\%$	
Adjustment for no-passing zones, fnp		54.7		
Percent time-spent-following, PTSFFd		50.7	$\%$	

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	38	veh-mi
Peak-hour vehicle-miles of travel, VMT60	104	veh-mi
Peak 15-min total travel time, TT15	0.8	veh-h
Capacity from ATS, CdATS	1651	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1651	veh/h

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 0.9 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 45.7 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 50.7 | |
| Level of service, LoSd (from above) | C | |

Average Travel Speed with Passing Lane \qquad

| Downstream length of two-lane highway within effective | | |
| :--- | :--- | :--- | :--- |
| length of passing lane for average travel speed, Lde | - | mi |
| Length of two-lane highway downstream of effective | | |
| length of the passing lane for average travel speed, Ld | - | mi |
| Adj. factor for the effect of passing lane | | |
| on average speed, fpl | - | |
| Average travel speed including passing lane, ATSpl | - | |
| Percent free flow speed including passing lane, PFFSpl | 0.0 | $\%$ |

Percent Time-Spent-Following with Passing Lane \qquad
$\begin{array}{ccc}\text { Downstream length of two-lane highway within effective length } & \\ \text { of passing lane for percent time-spent-following, Lde } & \text { - } & \text { mi } \\ \text { Length of two-lane highway downstream of effective length of } & \\ \text { the passing lane for percent time-spent-following, Ld } & \text { - } & \text { mi } \\ \text { Adj. factor for the effect of passing lane } & \\ \text { on percent time-spent-following, fpl } & \text { - } & \\ \text { Percent time-spent-following } \\ \text { including passing lane, PTSFpl }\end{array}$

[^15]\qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 168.1
Effective width of outside lane, We 27.72
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.28
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 SB
From/To	Dewey Rd / SR 2001
Jurisdiction	Redbank Township, Clarion Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

Highway class C	Class 1		Peak hour factor, PHF	0.74	
Shoulder width	5.0	$f t$	\% Trucks and buses	7	\%
Lane width	11.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Rolling		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	72	\%
Up/down	-	\%	Access point density	20	/mi
Analysis directi	ion volume, Vd	208	veh/h		
Opposing directi	ion volume, Vo	161	veh/h		

Average Travel Speed

Level of Service and Other Performance Measures \qquad
Level of service, LOS
Volume to capacity ratio, v/c
Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity
D
0.17

63 veh-mi
187 veh-mi
1.4 veh-h

1664 veh/h
1700 veh/h
1664 veh/h
Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^16]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	281.1
Effective width of outside lane, we	21.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	5.05
Bicycle LOS	E

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 NB
From/To	Moore Rd / Mendenhall Rd
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.78 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | | \% Trucks and buses | 8 | $\%$ |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.9 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 14 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 185 veh/h Opposing direction volume, Vo 106 veh/h

Average Travel Speed

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.7		1.8	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.947		0.940	
Grade adjustment factor, (note-1) fg	0.82		0.76	
Directional flow rate, (note-2) vi	305	pc / h	190	pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	30.6	\%	
Adjustment for no-passing zones, fnp		52.8		
Percent time-spent-following, PTSFd		63.1	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.14 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 53 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 166 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.1 | veh-h |
| Capacity from ATS, CdATS | 1661 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | $v e h / h ~$ |
| Directional Capacity | 1661 | $v e h / h$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	46.5
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	63.1	C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^17]\qquad

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, voL	237.2
Effective width of outside lane, we	15.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	6.40
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 NB
From/To	Moore Rd / Mendenhall Rd
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.76 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | $\%$ Trucks and buses | 9 | $\%$ | |
| Lane width | 11.0 | ft | $\%$ Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.9 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 14 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 158 veh/h
Opposing direction volume, Vo 285 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.941	0.949	
Grade adjustment factor, (note-1) fg	0.80	0.89	
Directional flow rate, (note-2) vi	276	pc/h	444
Base percent time-spent-following, (note-4)	BPTSFd	33.1	$\%$
Adjustment for no-passing zones, fnp		43.8	
Percent time-spent-following, PTSFd	49.9	$\%$	

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.13 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 47 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 142 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.0 | veh-h |
| Capacity from ATS, CdATS | 1656 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1656 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	46.3 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	49.9	C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl -

[^18]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 207.9
Effective width of outside lane, We 18.15
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.19
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 SB
From/To	Moore Rd / Mendenhall Rd
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.80 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | | \% Trucks and buses | 12 | $\%$ |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.9 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 14 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 106 veh/h
Opposing direction volume, Vo 185 veh/h

Average Travel Speed

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.8		1.7	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.912		0.923	
Grade adjustment factor, (note-1) fg	0.75		0.82	
Directional flow rate, (note-2) vi	194	pc / h	306	pc / h
Base percent time-spent-following, (note-4	e-4) BPTSFd	23.2	\%	
Adjustment for no-passing zones, fnp		52.8		
Percent time-spent-following, PTSFd		43.7	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	30	veh-mi
Peak-hour vehicle-miles of travel, VMT60	95	veh-mi
Peak 15-min total travel time, TT15	0.6	veh-h
Capacity from ATS, CdATS	1641	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1641	veh/h

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 0.9 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 47.2 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 43.7 | |
| Level of service, LoSd (from above) | C | |

Average Travel Speed with Passing Lane \qquad

Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		mi
length of the passing lane for average travel speed, Ld	-	
Adj. factor for the effect of passing lane		
on average speed, fpl	-	
Average travel speed including passing lane, ATSpl	Percent free flow speed including passing lane, PFFSpl	0.0

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^19]\qquad

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, voL	132.5
Effective width of outside lane, We	22.05
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	6.42
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 SB
From/To	Moore Rd / Mendenhall Rd
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.69 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | \% Trucks and buses | 6 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.9 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Rolling | | \% Recreational vehicles | 0 | $\%$ | |
| Grade: Length | - | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | - | $\%$ | Access point density | 14 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 285 veh/h
Opposing direction volume, Vo 158 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	93	veh-mi
Peak-hour vehicle-miles of travel, VMT60	256	veh-mi
Peak 15-min total travel time, TT15	2.1	veh-h
Capacity from ATS, CdATS	1669	veh/h
Capacity from PTSF, CdPTSF	1700	$v e h / h ~$
Directional Capacity	1669	$v e h / h$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	45.3
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	71.1	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^20]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	413.0
Effective width of outside lane, we	15.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	6.00
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL NB1
From/To	0.5 miles north of SR 85
Jurisdiction	Rayburn Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.94	
Shoulder width	6.0	ft	\% Trucks and buses	6	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.9	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade: Length	0.73	mi	\% No-passing zones	0	$\%$	
	Up/down	5.5	$\%$	Access point density	1	$/ \mathrm{mi}$

Analysis direction volume, Vd 542 veh/h
Opposing direction volume, Vo 310 veh/h

Average Travel Speed

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		0.994	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	577	pc / h	332	pc / h
Base percent time-spent-following, (note-4)	-4) BPTSFd	52.7	\%	
Adjustment for no-passing zones, fnp		12.0		
Percent time-spent-following, PTSFd		60.3	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.50 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 130 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 488 | veh-mi |
| Peak 15-min total travel time, TT15 | 2.7 | veh-h |
| Capacity from ATS, CdATS | 1151 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | veh/h |
| Directional Capacity | 1151 | veh/h |

Passing Lane Analysis

Total length of analysis segment, Lt	0.9	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.9	mi
Average travel speed, ATSd (from above)	$47.6 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	60.3	C

Average Travel speed with Passing Lane
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.21
Percent time-spent-following
including passing lane, PTSFpl 12.7 \%

[^21]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 576.6
Effective width of outside lane, We 23.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.65
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL NB2
From/To	btw SR 1027 and SR 1016
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	
Description SR 2019 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.76	
Shoulder width	5.0	ft	\% Trucks and buses	13	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.7	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.53	mi	\% No-passing zones	0	$\%$
	Up/down	5.6	$\%$	Access point density	1	$/ \mathrm{mi}$

Analysis direction volume, Vd 151 veh/h
Opposing direction volume, Vo 217 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.21 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 35 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 106 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.7 | veh-h |
| Capacity from ATS, CdATS | 927 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | veh/h |
| Directional Capacity | 927 | veh/h |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.7	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.7	mi
Average travel speed, ATSd (from above)	49.5	mi / h
Percent time-spent-following, PTSFd (from above)	30.1	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 6.0 \%

[^22]\qquad

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	198.7
Effective width of outside lane, we	24.92
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	6.41
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL NB2
From/To	btw SR 1027 and SR 1016
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	
Description SR 2019 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.90	
Shoulder width	5.0	ft	\% Trucks and buses	6	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.7	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.53	mi	\% No-passing zones	0	$\%$
	Up/down	5.6	$\%$	Access point density	1	$/ \mathrm{mi}$

Analysis direction volume, Vd 295 veh/h
Opposing direction volume, Vo 182 veh/h

Average Travel Speed

Direction Analysis(d)	Analysis(d)		Opposing (o)		
PCE for trucks, ET	7.4			1.5	
PCE for RVs, ER	1.1			1.0	
Heavy-vehicle adj. factor, (note-5) fHV	$V \quad 0.72$			0.971	
Grade adj. factor, (note-1) fg	0.6			1.00	
Directional flow rate, (note-2) vi	678	pc / h		208	
Free-Flow Speed from Field Measurement:					
Field measured speed, (note-3) S FM		-	mi / h		
Observed total demand, (note-3) V		-	veh/		
Estimated Free-Flow Speed:					
Base free-flow speed, (note-3) BFFS		60.0	mi / h		
Adj. for lane and shoulder width, (note-3)	-3) fLS	1.7	mi / h		
Adj. for access point density, (note-3) fA	fA	0.3	mi / h		
Free-flow speed, FFSd		58.0	mi/h		
Adjustment for no-passing zones, fnp		1.7	mi / h		
Average travel speed, ATSd		49.4	mi / h		
Percent Free Flow Speed, PFFS		85.2	\%		

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.1	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	0.994	
Grade adjustment factor, (note-1) fg	1.00		1.00
Directional flow rate, (note-2) vi	328	pc/h	203
Base percent time-spent-following, (note-4)	BPTSFd	32.3	$\%$
Adjustment for no-passing zones, fnp		14.0	
Percent time-spent-following, PTSFd	40.9	$\%$	

| _-_-_-_Level of Service and Other Performance Measures_-_ | | |
| :--- | :--- | :--- | :--- |
| Level of service, LoS | | |
| Volume to capacity ratio, v/c | 0.27 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 57 | $\mathrm{veh}-\mathrm{mi}$ |
| Peak-hour vehicle-miles of travel, VMT60 | 206 | $\mathrm{veh}-\mathrm{mi}$ |
| Peak 15-min total travel time, TT15 | 1.2 | $\mathrm{veh}-\mathrm{h}$ |
| Capacity from ATS, CdATS | 1227 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | | |

Passing Lane Analysis

Total length of analysis segment, Lt	0.7	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.7	mi
Average travel speed, ATSd (from above)	49.4	mi / h
Percent time-spent-following, PTSFd (from above)	40.9	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.21
Percent time-spent-following
including passing lane, PTSFpl 8.6 \%

[^23]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 327.8
Effective width of outside lane, We 21.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.80
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL NB3
From/To	0.4 mi south of Distant
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.76	
Shoulder width	5.0	ft	\% Trucks and buses	13	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.35	mi	\% No-passing zones	0	$\%$
	Up/down	8.5	$\%$	Access point density	0	$/ \mathrm{mi}$

Analysis direction volume, vd 151 veh/h
Opposing direction volume, Vo 217 veh/h
Average Travel Speed

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	25	veh-mi
Peak-hour vehicle-miles of travel, VMT60	76	veh-mi
Peak 15-min total travel time, TT15	0.5	veh-h
Capacity from ATS, CdATS	1051	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1051	veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.5	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.5	mi
Average travel speed, ATSd (from above)	$50.0 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	30.1	B

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 6.0 \%

Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 0.5 veh-h

\qquad

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	198.7
Effective width of outside lane, we	24.92
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	6.41
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL NB3
From/To	0.4 mi south of Distant
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.90	
Shoulder width	5.0	ft	\% Trucks and buses	6	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.35	mi	\% No-passing zones	0	$\%$
	Up/down	8.5	$\%$	Access point density	0	$/ \mathrm{mi}$

Analysis direction volume, Vd 295 veh/h
Opposing direction volume, Vo 182 veh/h

Average Travel Speed

Direction Ana	Analysi		Opposing (o)		
PCE for trucks, ET	6.1			1.5	
PCE for RVs, ER	1.2			1.0	
Heavy-vehicle adj. factor, (note-5) fHV	$V 0.76$			0.971	
Grade adj. factor, (note-1) fg	0.65			1.00	
Directional flow rate, (note-2) vi	659	pc / h		208	
Free-Flow Speed from Field Measurement:					
Field measured speed, (note-3) S FM		-	mi / h		
Observed total demand, (note-3) V		-	veh/		
Estimated Free-Flow Speed:					
Base free-flow speed, (note-3) BFFS		60.0	mi / h		
Adj. for lane and shoulder width, (note-3)	-3) fLS	1.7	mi / h		
Adj. for access point density, (note-3) fA	fA	0.0	mi / h		
Free-flow speed, FFSd		58.3	mi/h		
Adjustment for no-passing zones, fnp		1.7	mi / h		
Average travel speed, ATSd		49.8	mi / h		
Percent Free Flow Speed, PFFS		85.5	\%		

Direction Analy	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		0.994	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	328	pc / h	203	
Base percent time-spent-following, (note-4	e-4) BPTSFd	32.3	\%	
Adjustment for no-passing zones, fnp		14.0		
Percent time-spent-following, PTSFd		40.9	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.25 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 41 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 148 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.8 | veh-h |
| Capacity from ATS, CdATS | 1323 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | veh/h |
| Directional Capacity | 1323 | veh/h |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.5	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.5	mi
Average travel speed, ATSd (from above)	49.8	mi / h
Percent time-spent-following, PTSFd (from above)	40.9	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.21
Percent time-spent-following
including passing lane, PTSFpl 8.6 \%

[^24]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 327.8
Effective width of outside lane, We 21.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.80
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL NB4
From/To	2.25 mi south of South Main St
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.78 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 5.0 | ft | \% Trucks and buses | 8 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 1.0 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Specific Grade | \% Recreational vehicles | 0 | $\%$ | | |
| Grade: | Length | 0.81 | mi | \% No-passing zones | 0 | $\%$ |
| | Up/down | 5.1 | $\%$ | Access point density | 12 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 185 veh/h
Opposing direction volume, Vo 106 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.22 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 59 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 185 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.2 | veh-h |
| Capacity from ATS, CdATS | 1098 | veh/h |
| Capacity from PTSF, CdPTSF | 1700 | $v e h / h ~$ |
| Directional Capacity | 1098 | $v e h / h$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.0	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.0	mi
Average travel speed, ATSd (from above)	$48.9 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	33.0	C

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 6.6 \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 1.1 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 21.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.32
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL NB4
From/To	2.25 mi south of South Main St
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Analysis direction volume, Vd 158 veh/h
Opposing direction volume, Vo 285 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	52	veh-mi
Peak-hour vehicle-miles of travel, VMT60	158	veh-mi
Peak 15-min total travel time, TT15	1.1	veh-h
Capacity from ATS, CdATS	1052	veh/h
Capacity from PTSF, CdPTSF	1700	$v e h / h ~$
Directional Capacity	1052	$v e h / h$

Passing Lane Analysis

Total length of analysis segment, Lt	1.0	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.0	mi
Average travel speed, ATSd (from above)	47.0	mi / h
Percent time-spent-following, PTSFd (from above)	30.3	C

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 6.1 \%

[^25]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 207.9
Effective width of outside lane, We 24.36
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.87
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL SB1
From/To	near SR 1027
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	
Description SR 2019 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	5.0	ft	\% Trucks and buses	15	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.99	mi	\% No-passing zones	0	$\%$
	Up/down	6.4	$\%$	Access point density	5	$/ \mathrm{mi}$

Analysis direction volume, Vd 217 veh/h
Opposing direction volume, Vo 151 veh/h

Average Travel Speed

Direction Ana	Analysis(d)			Opposing (o)			
PCE for trucks, ET	10.3			1.6			
PCE for RVs, ER	1.4			1.0			
Heavy-vehicle adj. factor, (note-5) fHV	$\checkmark \quad 0.419$			0.917			
Grade adj. factor, (note-1) fg	0.58			1.00			
Directional flow rate, (note-2) vi	1015 pc/h			187			pc / h
Free-Flow Speed from Field Measurement:							
Field measured speed, (note-3) S FM		-		mi / h			
Observed total demand, (note-3) V		-		veh/			
Estimated Free-Flow Speed:							
Base free-flow speed, (note-3) BFFS		60.0		mi / h			
Adj. for lane and shoulder width, (note-3)	-3) fLS	1.7		mi / h			
Adj. for access point density, (note-3) fA	fA	1.3		mi / h			
Free-flow speed, FFSd		57.0		mi/h			
Adjustment for no-passing zones, fnp		1.5		mi / h			
Average travel speed, ATSd		46.2		mi / h			
Percent Free Flow Speed, PFFS		81.0		\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.34 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 74 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 260 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.6 | veh-h |
| Capacity from ATS, CdATS | 721 | veh/h |
| Capacity from PTSF, CdPTSF | 1652 | veh/h |
| Directional Capacity | 721 | veh/h |

Passing Lane Analysis

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.2	mi
Average travel speed, ATSd (from above)	46.2	mi / h
Percent time-spent-following, PTSFd (from above)	34.6	C

Average Travel speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde 0.00 \quad mi

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 6.9 \%

[^26]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 246.6
Effective width of outside lane, We 21.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.40
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL SB1
From/To	near SR 1027
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.95	
Shoulder width	5.0	ft	\% Trucks and buses	13	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.99	mi	\% No-passing zones	0	$\%$
	Up/down	6.4	$\%$	Access point density	5	$/ \mathrm{mi}$

Analysis direction volume, Vd 182 veh/h
Opposing direction volume, Vo 295 veh/h

Average Travel Speed

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		0.987	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	192	pc / h	315	pc / h
Base percent time-spent-following, (note-4)	-4) BPTSFd	23.8	\%	
Adjustment for no-passing zones, fnp		14.0		
Percent time-spent-following, PTSFd		29.1	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.25 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 57 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 218 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.2 | veh-h |
| Capacity from ATS, CdATS | 780 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1659 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 780 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.2	mi
Average travel speed, ATSd (from above)	$47.1 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	29.1	C

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde 0.00 \quad mi

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 5.8 \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 1.1 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 191.6
Effective width of outside lane, We 21.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.29
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL SB2
From/To	north of Calhoun Rd
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	\% Trucks and buses	15	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.7	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	1.39	mi	\% No-passing zones	0	$\%$
	Up/down	5.9	$\%$	Access point density	4	$/ \mathrm{mi}$

Analysis direction volume, Vd 217 veh/h
Opposing direction volume, Vo 151 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.4		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.943		0.985	
Grade adjustment factor,(note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	261	pc/h	174	pc / h
Base percent time-spent-following, (note-4)	BPTSFd	27.0	$\%$	
Adjustment for no-passing zones, fnp		14.8		
Percent time-spent-following, PTSFFd		35.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	105	veh-mi
Peak-hour vehicle-miles of travel, VMT60	369	veh-mi
Peak 15-min total travel time, TT15	2.2	veh-h
Capacity from ATS, CdATS	670	veh/h
Capacity from PTSF, CdPTSF	1579	veh/h
Directional Capacity	670	veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		1.7	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi	
Length of passing lane including tapers, Lpl	1.7	mi	
Average travel speed, ATSd (from above)	46.8	mi / h	
Percent time-spent-following, PTSFd (from above)	35.9		
Level of service, LoSd (from above)	C		

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective			
length of passing lane for average travel speed, Lde	0.00	mi	
Length of two-lane highway downstream of effective			
length of the passing lane for average travel speed, Ld	0.00	mi	
Adj. factor for the effect of passing lane	1.14		
on average speed, fpl		53.4	
Average travel speed including passing lane, ATSpl	Percent free flow speed including passing lane, PFFSpl	91.1	$\%$

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 7.2 \%

[^27]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 246.6
Effective width of outside lane, We 27.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.96
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL SB2
From/To	north of Calhoun Rd
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.95	
Shoulder width	8.0	ft	\% Trucks and buses	13	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.7	Si	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	1.39	mi	\% No-passing zones	0	$\%$
	Up/down	5.9	$\%$	Access point density	4	$/ \mathrm{mi}$

Analysis direction volume, Vd 182 veh/h
Opposing direction volume, Vo 295 veh/h

Average Travel Speed

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.4		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.952		0.987	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	201	pc / h	315	pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	24.7	\%	
Adjustment for no-passing zones, fnp		14.0		
Percent time-spent-following, PTSFd		30.2	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.26 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 81 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 309 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.7 | veh-h |
| Capacity from ATS, CdATS | 728 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1594 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 728 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.7	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.7	mi
Average travel speed, ATSd (from above)	48.0	mi / h
Percent time-spent-following, PTSFd (from above)	30.2	C

Average Travel speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 6.0 \%

[^28]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 191.6
Effective width of outside lane, We 27.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.85
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL SB3
From/To	btw Distant and S Bethlehem
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Average Travel Speed \qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	55	veh-mi
Peak-hour vehicle-miles of travel, VMT60	209	veh-mi
Peak 15-min total travel time, TT15	1.1	veh-h
Capacity from ATS, CdATS	976	veh/h
Capacity from PTSF, CdPTSF	1700	$v e h / h ~$
Directional Capacity	976	$v e h / h ~$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.9	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.9	mi
Average travel speed, ATSd (from above)	50.1	mi / h
Percent time-spent-following, PTSFd (from above)	34.8	B

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde 0.00 \quad mi

Percent Time-Spent-Following with Passing Lane
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld $\quad 0.0 .00 \mathrm{mi}$

[^29]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 31.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.81
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL SB3
From/To	Btw Distant and S Bethlehem
Jurisdiction	Mahoning Twnshp, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Average Travel Speed \qquad

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		0.996	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	351	pc / h	375	pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	38.5	\%	
Adjustment for no-passing zones, fnp		15.5		
Percent time-spent-following, PTSFd		46.0	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	79	veh-mi
Peak-hour vehicle-miles of travel, VMT60	281	veh-mi
Peak 15-min total travel time, TT15	1.6	veh-h
Capacity from ATS, CdATS	1384	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1384	$v e h / h$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.9	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.9	mi
Average travel speed, ATSd (from above)	50.2	mi / h
Percent time-spent-following, PTSFd (from above)	46.0	B

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.21
Percent time-spent-following
including passing lane, PTSFpl 9.7 \%

[^30]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 31.00
Effective speed factor, St
Bicycle LOS Score, BLOS
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL SB4
From/To	Just west of Summerville
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.83	
Shoulder width	5.0	ft	\% Trucks and buses	12	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.1	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.88	mi	\% No-passing zones	0	$\%$
	Up/down	6.0	$\%$	Access point density	5	$/ \mathrm{mi}$

Analysis direction volume, Vd 73 veh/h
Opposing direction volume, Vo 154 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	24	veh-mi
Peak-hour vehicle-miles of travel, VMT60	80	veh-mi
Peak 15-min total travel time, TT15	0.5	veh-h
Capacity from ATS, CdATS	836	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1679	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	836	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis

Total length of analysis segment, Lt	1.1	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.1	mi
Average travel speed, ATSd (from above)	50.9	mi / h
Percent time-spent-following, PTSFd (from above)	13.7	B

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 2.7 \%

[^31]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 88.0
Effective width of outside lane, We 31.16
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.79
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL SB4
From/To	Just west of Summerville
Jurisdiction	Clover Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Analysis direction volume, Vd 214 veh/h
Opposing direction volume, Vo 125 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.22 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 69 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 235 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.4 | veh-h |
| Capacity from ATS, CdATS | 1120 | veh/h |
| Capacity from PTSF, CdPTSF | 1689 | $v e h / h ~$ |
| Directional Capacity | 1120 | $v e h / h$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.1	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.1	mi
Average travel speed, ATSd (from above)	49.7	mi / h
Percent time-spent-following, PTSFd (from above)	34.6	

Average Travel Speed with Passing Lane

| Downstream length of two-lane highway within effective | | |
| :--- | :--- | :--- | :--- |
| length of passing lane for average travel speed, Lde | 0.00 | mi |
| Length of two-lane highway downstream of effective | | |
| length of the passing lane for average travel speed, Ld | 0.00 | |
| Adj. factor for the effect of passing lane | | 1.14 |
| on average speed, fpl | 56.6 | |
| Average travel speed including passing lane, ATSpl | \% | |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 6.9 \%

[^32]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 21.00
Effective speed factor, St
4.79
Bicycle LOS Score, BLOS 4.67
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL SB5
From/To	1.1 miles S of S Main St
Jurisdiction	Rose Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Average Travel Speed

Direction Ana	Analysi		Opposing (o)		
PCE for trucks, ET	8.5			1.5	
PCE for RVs, ER	1.3			1.0	
Heavy-vehicle adj. factor, (note-5) fHV	$V 0.5$			0.943	
Grade adj. factor, (note-1) fg	0.6			1.00	
Directional flow rate, (note-2) vi	376	pc / h		245	
Free-Flow Speed from Field Measurement:					
Field measured speed, (note-3) S FM		-	mi / h		
Observed total demand, (note-3) V		-	veh/		
Estimated Free-Flow Speed:					
Base free-flow speed, (note-3) BFFS		60.0	mi / h		
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.4	mi / h		
Adj. for access point density, (note-3) fA	fA	3.8	mi / h		
Free-flow speed, FFSd		55.8	mi/h		
Adjustment for no-passing zones, fnp		1.5	mi / h		
Average travel speed, ATSd		49.5	mi / h		
Percent Free Flow Speed, PFFS		88.7	\%		

Direction	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.995		0.988	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	133	pc / h	234	pc / h
Base percent time-spent-following, (not	-4) BPTSFd	15.5	\%	
Adjustment for no-passing zones, fnp		12.7		
Percent time-spent-following, PTSFd		20.1	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.12 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 46 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 148 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.9 | veh-h |
| Capacity from ATS, CdATS | 1131 | veh/h |
| Capacity from PTSF, CdPTSF | 1649 | veh/h |
| Directional Capacity | 1131 | veh/h |

Passing Lane Analysis

Total length of analysis segment, Lt	1.4	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.4	mi
Average travel speed, ATSd (from above)	49.5	mi / h
Percent time-spent-following, PTSFd (from above)	20.1	C

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.20
Percent time-spent-following
including passing lane, PTSFpl 4.0 \%

[^33]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 30.99
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.05
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Existing CL SB5
From/To	1.1 miles S of S Main St
Jurisdiction	Rose Township, Jefferson Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Average Travel Speed

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.30 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 145 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 399 | veh-mi |
| Peak 15-min total travel time, TT15 | 3.1 | veh-h |
| Capacity from ATS, CdATS | 1358 | veh/h |
| Capacity from PTSF, CdPTSF | 1649 | $v e h / h ~$ |
| Directional Capacity | 1358 | $v e h / h$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.4	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.4	mi
Average travel speed, ATSd (from above)	47.0	mi / h
Percent time-spent-following, PTSFd (from above)	48.1	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 0.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld 0.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.21
Percent time-spent-following
including passing lane, PTSFpl 10.1 \%

[^34]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 413.0
Effective width of outside lane, We 23.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.48
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Proposed CL NBX1
From/To	Pine Furnace to SR 1029
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	
Description SR 2019 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.82	
Shoulder width	3.0	ft	\% Trucks and buses	13	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.4	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	1.38	mi	\% No-passing zones	100	$\%$
	Up/down	4.0	$\%$	Access point density	13	$/ \mathrm{mi}$

Analysis direction volume, Vd 220 veh/h
Opposing direction volume, Vo 403 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0		1.0	1.000
Heavy-vehicle adjustment factor, fHV	0.997		1.00	
Grade adjustment factor, (note-1) fg	0.99		pc/h	
Directional flow rate, (note-2) vi	271	491	pc/h	
Base percent time-spent-following, (note-4)	BPTSFd	34.0	$\%$	
Adjustment for no-passing zones, fnp		40.9		
Percent time-spent-following, PTSFd	48.5	$\%$		

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	94	veh-mi
Peak-hour vehicle-miles of travel, VMT60	308	veh-mi
Peak 15-min total travel time, TT15	2.2	veh-h
Capacity from ATS, CdATS	1063	veh/h
Capacity from PTSF, CdPTSF	1649	veh/h
Directional Capacity	1063	veh/h

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 1.4 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 42.0 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 48.5 | |
| Level of service, LoSd (from above) | D | |

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^35]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vol	268.3
Effective width of outside lane, we	14.00
Effective speed factor, St	4.79
Bicycle LoS Score, BLOS	8.69
Bicycle LOS	

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Proposed CL NBX1
From/To	Pine Furnace to SR 1029
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.94	
Shoulder width	3.0	ft	\% Trucks and buses	6	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.4	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	1.38	mi	\% No-passing zones	100	$\%$
	Up/down	4.0	$\%$	Access point density	13	$/ \mathrm{mi}$

Analysis direction volume, Vd 542 veh/h
Opposing direction volume, Vo 310 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.1	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	0.994	
Grade adjustment factor, (note-1) fg	0.97		1.00
Directional flow rate, (note-2) vi	594	pc/h	332
Base percent time-spent-following, (note-4)	BPTSFd	53.7	$\%$
Adjustment for no-passing zones, fnp		36.3	
Percent time-spent-following, PTSFd	77.0	$\%$	

| | | |
| :--- | :--- | :--- | :--- |
| Level of service, LoS | | |
| Volume to capacity ratio, v/c | 0.43 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 202 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 759 | $\mathrm{veh}-\mathrm{mi}$ |
| Peak 15-min total travel time, TT15 | 4.9 | $\mathrm{veh}-\mathrm{h}$ |
| Capacity from ATS, CdATS | 1331 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1649 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | | |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.4	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	41.4	mi / h
Percent time-spent-following, PTSFd (from above)		
Level of service, LOSd (from above)	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%

[^36]\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 576.6
Effective width of outside lane, We 14.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.31
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Proposed CL NBX2
From/To	North of SR 1018
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.76	
Shoulder width	4.0	ft	\% Trucks and buses	13	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.9	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.90	mi	\% No-passing zones	100	$\%$
	Up/down	6.4	$\%$	Access point density	10	$/ \mathrm{mi}$

Analysis direction volume, Vd 151 veh/h
Opposing direction volume, Vo 217 veh/h

Average Travel Speed

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.1		
PCE for RVs, ER	1.0		1.0	0.987
Heavy-vehicle adjustment factor, fHV	1.000		1.00	
Grade adjustment factor,(note-1) fg	1.00		pc/h	289
Directional flow rate, (note-2) vi	199	pc / h		
Base percent time-spent-following, (note-4)	BPTSFd	24.1	$\%$	
Adjustment for no-passing zones, fnp		56.2		
Percent time-spent-following, PTSFFd		47.0	$\%$	

Level of service, LOS	D		
Volume to capacity ratio, v/c	0.25		
Peak 15-min vehicle-miles of travel, VMT15	45	veh-mi	
Peak-hour vehicle-miles of travel, VMT60	136	veh-mi	
Peak $15-\mathrm{min}$ total travel time, TT15	1.0	veh-h	
Capacity from ATS, CdATS	797	veh/h	
Capacity from PTSF, CdPTSF	1674	veh/h	
Directional Capacity	797	veh/h	
Passing Lane Analysis			
Total length of analysis segment, Lt		0.9	mi
Length of two-lane highway upstream of the passing	lane,	-	mi
Length of passing lane including tapers, Lpl		-	mi
Average travel speed, ATSd (from above)		44.0	mi / h
Percent time-spent-following, PTSFd (from above)		47.0	
Level of service, LOSd (from above)		D	

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		
length of the passing lane for average travel speed, Ld	-	mi
Adj. factor for the effect of passing lane		
on average speed, fpl		
Average travel speed including passing lane, ATSpl	-	
Percent free flow speed including passing lane, PFFSpl	0.0	$\%$

Percent Time-Spent-Following with Passing Lane \qquad
$\begin{array}{ccc}\text { Downstream length of two-lane highway within effective length } & \\ \text { of passing lane for percent time-spent-following, Lde } & \text { - } & \text { mi } \\ \text { Length of two-lane highway downstream of effective length of } & \\ \text { the passing lane for percent time-spent-following, Ld } & \text { - } & \text { mi } \\ \text { Adj. factor for the effect of passing lane } & \\ \text { on percent time-spent-following, fpl } & \text { - } & \\ \text { Percent time-spent-following } \\ \text { including passing lane, PTSFpl } & \text { - }\end{array}$

[^37]\qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL
Effective width of outside lane, We 18.68
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.77
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Proposed CL NBX2
From/To	North of SR 1018
Jurisdiction	Boggs Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.90	
Shoulder width	4.0	ft	\% Trucks and buses	6	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.9	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.90	mi	\% No-passing zones	100	$\%$
	Up/down	6.4	$\%$	Access point density	10	$/ \mathrm{mi}$

Analysis direction volume, Vd 295 veh/h
Opposing direction volume, Vo 182 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

Level of service, LOS
Volume to capacity ratio, v/c
Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity

D
0.29

74 veh-mi
265 veh-mi
1.7 veh-h

1117 veh/h
1688 veh/h
1117 veh/h

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^38]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	327.8
Effective width of outside lane, we	15.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	5.88
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Proposed CL SBX1
From/To	North of SR 1028
Jurisdiction	Rayburn Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	3.0	ft	\% Trucks and buses	15	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.6	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade:	Length	0.62	mi	\% No-passing zones	100	$\%$
	Up/down	7.4	$\%$	Access point density	19	$/ \mathrm{mi}$

Analysis direction volume, Vd 217 veh/h
Opposing direction volume, Vo 151 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad
Level of service, LOS E
Volume to capacity ratio, v/c 0.31

Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity

E
0.31

37 veh-mi
130 veh-mi
0.9 veh-h

785 veh/h
1630 veh/h
785 veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.6	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$39.1 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	59.2	E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl
_____Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	246.6
Effective width of outside lane, we	14.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	9.62
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Proposed CL SBX1
From/To	North of SR 1028
Jurisdiction	Rayburn Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.95	
Shoulder width	3.0	ft	\% Trucks and buses	13	$\%$	
Lane width	11.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.6	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Specific Grade	\% Recreational vehicles	0	$\%$		
Grade: Length	0.62	mi	\% No-passing zones	100	$\%$	
	Up/down	7.4	$\%$	Access point density	19	$/ \mathrm{mi}$

Analysis direction volume, Vd 182 veh/h
Opposing direction volume, Vo 295 veh/h

Average Travel Speed

Level of Service and Other Performance Measures \qquad

Level of service, LOS
Volume to capacity ratio, v/c
Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity

D
0.23

29
109
0.7

847
1639
847
veh-mi
veh-mi
veh-h
veh/h
veh/h
veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.6	mi
Length of two-lane highway upstream of the passing lane, Lu	-m	mi
Length of passing lane including tapers, Lpl	$-\quad 40.5$	mi / h
Average travel speed, ATSd (from above)	44.2	D
Percent time-spent-following, PTSFd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

[^39]Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15

- veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	191.6
Effective width of outside lane, we	14.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	8.52
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Proposed CL SBX2
From/To	Pine Furnace to Mechling Rd
Jurisdiction	Rayburn Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.88 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | $\%$ Trucks and buses | 15 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.9 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Specific Grade | \% Recreational vehicles | 0 | $\%$ | | |
| Grade: | Length | 0.88 | mi | \% No-passing zones | 100 | $\%$ |
| | Up/down | 5.5 | $\%$ | Access point density | 9 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 217 veh/h
Opposing direction volume, Vo 151 veh/h

Average Travel Speed

Direction Ana	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.996		0.985	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	247	pc/h	174	pc/h
Base percent time-spent-following, (note-4	e-4) BPTSFd	25.8	\%	
Adjustment for no-passing zones, fnp		57.0		
Percent time-spent-following, PTSFd		59.2	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS
Volume to capacity ratio, v/c
Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity

D
0.33

55 veh-mi
195 veh-mi
1.3 veh-h

741 veh/h
1674 veh/h
741 veh/h

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

_____Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

Posted speed limit, Sp	55
Percent of segment with occupied on-highway parking	0
Pavement rating, P	3
Flow rate in outside lane, vOL	246.6
Effective width of outside lane, we	15.00
Effective speed factor, St	4.79
Bicycle Los Score, BLOS	9.48
Bicycle LOS	F

Notes:

1. Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conditions. For the purpose of grade adjustment, specific dewngrade segments are treated as level terrain.
2. If vi (vd or vo) >= 1,700 pc/h, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	PM Peak
Highway	SR 28 - Proposed CL SBX2
From/To	Pine Furnace to Mechling Rd
Jurisdiction	Rayburn Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

| Highway class | Class | 1 | | Peak hour factor, PHF | 0.95 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shoulder width | 4.0 | ft | \% Trucks and buses | 13 | $\%$ | |
| Lane width | 11.0 | ft | \% Trucks crawling | 0.0 | $\%$ | |
| Segment length | 0.9 | mi | Truck crawl speed | 0.0 | $\mathrm{mi} / \mathrm{hr}$ | |
| Terrain type | Specific Grade | \% Recreational vehicles | 0 | $\%$ | | |
| Grade: Length | 0.88 | mi | \% No-passing zones | 100 | $\%$ | |
| | Up/down | 5.5 | $\%$ | Access point density | 9 | $/ \mathrm{mi}$ |

Analysis direction volume, Vd 182 veh/h
Opposing direction volume, Vo 295 veh/h

Average Travel Speed

Direction Ana	Analysi		Opposing (o)		
PCE for trucks, ET	9.7			1.4	
PCE for RVs, ER	1.5			1.0	
Heavy-vehicle adj. factor, (note-5) fHV	$V \quad 0.4$			0.951	
Grade adj. factor, (note-1) fg	0.5			1.00	
Directional flow rate, (note-2) vi	729	pc / h		327	
Free-Flow Speed from Field Measurement:					
Field measured speed, (note-3) S FM		-	mi / h		
Observed total demand, (note-3) V		-	veh/		
Estimated Free-Flow Speed:					
Base free-flow speed, (note-3) BFFS		60.0	mi / h		
Adj. for lane and shoulder width, (note-3)	-3) fLS	1.7	mi / h		
Adj. for access point density, (note-3) fA	fA	2.3	mi / h		
Free-flow speed, FFSd		56.0	mi/h		
Adjustment for no-passing zones, fnp		3.4	mi / h		
Average travel speed, ATSd		44.4	mi / h		
Percent Free Flow Speed, PFFS		79.3	\%		

Direction Analy	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		0.987	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	192	pc / h	315	pc / h
Base percent time-spent-following, (note-4	e-4) BPTSFd	23.8	\%	
Adjustment for no-passing zones, fnp		54.0		
Percent time-spent-following, PTSFd		44.2	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS
Volume to capacity ratio, v/c
Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
Capacity from ATS, CdATS
Capacity from PTSF, CdPTSF
Directional Capacity

D
0.24

43 veh-mi
164 veh-mi
1.0 veh-h

802 veh/h
1677 veh/h
802 veh/h

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

_____Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 191.6
Effective width of outside lane, We 15.00
Effective speed factor, St
4.79
Bicycle LOS Score, BLOS
8.37
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	French
Agency/Co.	French Engineering
Date Performed	$1 / 30 / 2020$
Analysis Time Period	AM Peak
Highway	SR 28 - Existing CL NB1
From/To	0.5 miles north of SR 85
Jurisdiction	Rayburn Township, Armstrong Co
Analysis Year	2019
Description SR 28 Corridor Study	

Input Data \qquad

Average Travel Speed

Direction Analy	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		1.000	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	268	pc / h	491	
Base percent time-spent-following, (note-4)	e-4) BPTSFd	33.7	\%	
Adjustment for no-passing zones, fnp		12.2		
Percent time-spent-following, PTSFd		38.0	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | C | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.32 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 60 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 198 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.3 | $\mathrm{veh}-\mathrm{h}$ |
| Capacity from ATS, CdATS | 836 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 836 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis

Total length of analysis segment, Lt	0.9	mi
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi
Length of passing lane including tapers, Lpl	0.9	mi
Average travel speed, ATSd (from above)	$47.3 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	38.0	

Average Travel speed with Passing Lane
Downstream length of two-lane highway within effective

length of passing lane for average travel speed, Lde $\mathbf{0 . 0 0}$| mi |
| :---: |
| Length of two-lane highway downstream of effective |
| length of the passing lane for average travel speed, Ld |
| Adj. factor for the effect of passing lane |
| on average speed, fpl |
| Average travel speed including passing lane, ATSpl |
| Percent free flow speed including passing lane, PFFSpl |

Percent Time-Spent-Following with Passing Lane
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld

[^40]\qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 1.1 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 268.3
Effective width of outside lane, We 23.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.02
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


APPENDIX C Design Criteria

25 MPH DESIGN CRITERIA

BY: NVA	DATE: $\quad 3 / 18 / 2020$
CHK'D BY: JDW	DATE: 4/1/2020

DESIGN CRITERIA MATRIX
MPMS NO. \qquad N/A N/A, Clarion \qquad COUNTY

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to I-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N)
N

DESIGN DESIGNATION

RT 28

DESIGN CRITERIA Reconstruction
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Suburban Center
TOPOGRAPHY Rolling
REMARKS New Bethlehem
(4) tRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 8896 (2017)
DESIGN YEAR ADT (Average Daily Traffic) 10229
DESIGN YEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 818
D (Directional Distribution) 55
T (Truck Percentage) 5 \qquad
\longrightarrow
SR 28 SEC N/A Clarion_COUNTY

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED VALUE	PROPOSED VALUE	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			25 MPH	30-35 MPH	25 MPH	No	DM-2, Table 1.3	
Lane Width			11'	10' to 12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			8'	4'-6'	8'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			44'	28'-36'	44'	Yes	DM-2, Sec. 1.2C	
Minimum Horizontal Radius			600'	231' to 340'	600'	No	AASHTO, Table 3-9	* 25 mph , minimum radius is $144{ }^{\prime}$
Maximum Superelevation Rate			Varies	6.0\%	6.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		0.10\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 103
	Maximum		2.90\%	6.00\%	6.00\%	Yes	AASHTO, Table 7-2	line segment 90
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	200'-250'	200'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	335' to 390'	280'	No	AASHTO, Table 9-6	* 25 mph , minimum ISD is 280^{\prime}
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2. Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	N/A	N/A	DM-2, Table 2.2	

*Refer to Publication 10X, Design Manual 1X, Appendix P for more information on controlling criteria and design exceptions.
6 Any pedestrian and bicycle concerns/needs? Explain. Sidewalks, multimodal
Any ADA compliance issues? Explain. ADA ramps on corners through town
Any transit issues? Explain. \qquad
\qquad
Any additional design issues? Explain \qquad

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-9. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=6 \%$

	$\begin{aligned} & V_{a}=20 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=30 \\ & k m / h \end{aligned}$	$\begin{aligned} & V_{o j}=40 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=60 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=70 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{o}=80 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=90 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{gathered} V_{d t}=100 \\ k m / h \end{gathered}$	$\begin{aligned} & V_{\sigma}=310 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=120 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=130 \\ & k \mathrm{~m} / \mathrm{h} \end{aligned}$
$e(\%)$	$R(m)$	$R(\mathrm{~m})$	R (m)	$R(\mathrm{~m})$	B (m)	$8(m)$	$n(m)$	$8(\mathrm{~m})$	$R(\mathrm{~m})$	8 (m)	$R(\mathrm{~m})$	$R(m)$
NKC	194	421	738	1050	1440	1910	2366	2880	3510	4060	4770	5249
RC	138	299	525	750	1030	1380	1710	2090	2560	2970	3310	3880
2.2	122	265	465	668	919	1230	1530	1880	2300	2670	3160	3500
2.4	109	236	415	599	825	1110	2380	1700	2080	2420	2870	3190
2.6	97	212	3.12	540	746	1000	1260	1540	1890	2210	2630	2930
2.8	87	120	334	488	676	910	1150	1410	1730	2020	2420	27.06)
3.0	78	. 176	300	443	615	831	1050	1290	1590	1870	2240	2510
3.2	71	152	26.5	402	561	762	959	1190	1470	1730	2080	2330
3.4	61	133	239	364	511	697	88.	1100	1360	1600	1940	2180
3.6	51	123	206	329	465	640	813	1020	1260	1490	1810	2050
3.8	42	96	177	294	422	585	749	939	1170	1390	1700	1930
4.0	36	82.	155	261	380	535	690	870	1090	1300	1590	1820
4.2	31	72	136	234	343	488	635	806	1010	1220	1500	1720
4.4	27	63	121	210	311	446	584	746	938	1140	1410	1630
4.6	24	56	108	190	283	408	538	692	873	1070	1330	1540
4.8	21	50	97	172	258	374	496	641	812	997	1260	1.470
5.0	19	45	88	155	23.5	343	457	394	755	933	2190	1400
5.2	17	40	79	142	214	31.5	421	549	701	871	1120	1330
5.4	15	36	1	128	195	287	386	506	648	810	1060	1260
5.6	13	32	63	115	176	260	351	463	594	747	980	1190
5.8	11	2.8	56	102	156	232	315	$4 \mathrm{th}^{6}$	537	679	9017	1110
6.0	8	21	43	79	123	184	252	336	437	360	756	951

Whan														
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{\mathrm{D}}=20 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & y_{\mathrm{tf}^{*} \neq 25}^{\mathrm{mph}} \end{aligned}$	$\begin{gathered} V_{d}=30 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{j}=35 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} V_{t d}=4 i \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{a}=45 \\ \text { mph } \end{gathered}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{mph} \end{aligned}$	$\begin{aligned} & V_{d}=55 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{j}=60 \\ m p h \end{gathered}$	$\begin{gathered} V_{d}=65 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & v_{d}=70 \\ & \text { mph } \end{aligned}$	$\begin{gathered} v_{d t}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \text { mph } \end{gathered}$
e (\%)	R (ft)	$R(f t)$	8 (ta)	$R(f t)$	R $\{4$ t $\}$	R (ft)	$R(f t)$	$\mathrm{R}(\mathrm{t}$)	$R(\mathrm{ft})$	R $\{\mathrm{ft}$)	R (ft)	R(侄)	$R(\mathrm{ft})$	$\mathrm{R}(\mathrm{ft})$
NC	868	1580	2290	3130	4100	5230	6480	7870	9410	11100	12500	14100	15700	17400
R\%,	614	1120	1630	2240	2950	3770	4680	5700	6820	8060	9130	10300	11580	12900
2.2	543	991	1450	2000	2630	3378	4190	5100	6110	7230	B200	9240	10400	11600
2.4	482	884	1300	1790	2360	3030	3770	4600	5520	6540	7430	8380	9420	10600
2.6	430	791	1170	16.10	2130	2740	3920	4170	5020	5950	6770	7660	8620	9671
2.8	384	729	1.050	1460	1930	2490	3110	3800	4580	5440	6200	7030	7930	8910
3.0	341	635	944	1320	1760	2270	2840	3480	4200	4990	5710	6490	7330	8260
3.2	300	566	850	1200	1600	2080	2600	32.50	3860	4600	5280	6010	6810	7680
3.4	256	498	761	1080	1460	1900	2390	2940	3560.	4250	4890	5580	6340	7180
3.6	209	922	613	372	1320	1740	2190	2710	3290	3940	4540	52.10	5930	6720
3.8	176	358	583	864	1190	1590	2010	2490	3040	3650	4230	4860	5560	6320
4.0	151	309	511	766	1070	1440	1840	2300	2810	3390	3950	4550	5220	5950
4.2	131	270	452	584	960	1310	1680	2110	2590	3140	3680	4270	4910	5620
4.4	116	238	402	615	868	1190	1540	1940	2400	2920	3440	4010	4630	5320
4.6	102	212	360	555	788	1090	1410	1.780	2210	2710.	3220	3770	4380	5040
4.8	91	189	324	502	718	995	1300	1640	2050	2.510	3000	3550	4149	4790
5.0	82	169	292	456	654	911	1190	1510	1890	2330	2800	3330	3910	4550
5.2	73	152	264	413	595	833	1090	1390	1750	2160	2610	3120	3690	4320.
5.4	65	136	237	373	340	759	99.5	1280	1610	1990	2429	2910	3460	4090
3.6	58	121	212	335	487	687	903	1160	1470	1830	2230	2700	3230	3840
5.8	51	106	186	296	431	611	88	1040	1320	1650	2020	2460	2970	3560
6.0	39	8.1	144	231	340	485	643	833	1060	1330	1660	2040	2500	3050

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain					ifte							S.	sto	ar			
	Maximum Grade (\%) for Specified Design Speed (km/h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	80	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rofling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detalled discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft$]$ of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximmm grades for rural arterials. When vertical curves for stopping sight dis-
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becatse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sigh distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Merric				U.S. Customary			
Design	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
Speed (km / h)		Calculated (m)	Design (m)			Calculated (t)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn feft onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

35 MPH DESIGN CRITERIA

BY: NVA	DATE: $\frac{3 / 18 / 2020}{1 / 2020}$
CHK'D BY: JDW	

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to I-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N)
N

DESIGN DESIGNATION

RT 28
DESIGN CRITERIA Reconstruction
(4) TRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 8996 (2017)
DESIGN YEAR ADT (Average Daily Traffic) 10344
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Suburban Center
DEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 828
TOPOGRAPHY Rolling
REMARKS South Bethlehem, Hawthorn,
Summerville

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED VALUE	PROPOSED VALUE	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			35 MPH	30-35 MPH	35 MPH	Yes	DM-2, Table 1.3	
Lane Width			11'	10'-12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			2'-8'	4'-6'	6'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			44^{\prime}	28'-36'	44'	Yes	DM-2, Table 1.2G	
Minimum Horizontal Radius			75'	231' to 340'	$340 '$	Yes	AASHTO, Table 3-9	
Maximum Superelevation Rate			Varies	6.0\%	6.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		0.40\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 110
	Maximum		1.90\%	6.00\%	6.00\%	Yes	AASHTO, Table 7-2	line segment 117
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	200' to 250'	250'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	$335{ }^{\prime}$ to 390'	390'	Yes	AASHTO, Table 9-6	
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2, Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	N/A	Yes	DM-2, Table 2.2	

*Refer to Publication 10X, Design Manual 1X, Appendix P for more information on controlling criteria and design exceptions.
6 Any pedestrian and bicycle concerns/needs? Explain. Sidewalks, multimodal
Any ADA compliance issues? Explain. ADA ramps on corners through town
Any transit issues? Explain
Any additional design issues? Explain. 15 mph curve entering New Bethleham

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-9. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=6 \%$

	$\begin{aligned} & V_{a}=20 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=30 \\ & k m / h \end{aligned}$	$\begin{aligned} & V_{o j}=40 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=60 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=70 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{o}=80 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=90 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{gathered} V_{d t}=100 \\ k m / h \end{gathered}$	$\begin{aligned} & V_{\sigma}=310 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=120 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=130 \\ & k \mathrm{~m} / \mathrm{h} \end{aligned}$
$e(\%)$	$R(m)$	$R(\mathrm{~m})$	R (m)	$R(\mathrm{~m})$	B (m)	$8(m)$	$n(m)$	$8(\mathrm{~m})$	$R(\mathrm{~m})$	8 (m)	$R(\mathrm{~m})$	$R(m)$
NKC	194	421	738	1050	1440	1910	2366	2880	3510	4060	4770	5249
RC	138	299	525	750	1030	1380	1710	2090	2560	2970	3310	3880
2.2	122	265	465	668	919	1230	1530	1880	2300	2670	3160	3500
2.4	109	236	415	599	825	1110	2380	1700	2080	2420	2870	3190
2.6	97	212	3.12	540	746	1000	1260	1540	1890	2210	2630	2930
2.8	87	120	334	488	676	910	1150	1410	1730	2020	2420	27.06)
3.0	78	. 176	300	443	615	831	1050	1290	1590	1870	2240	2510
3.2	71	152	26.5	402	561	762	959	1190	1470	1730	2080	2330
3.4	61	133	239	364	511	697	88.	1100	1360	1600	1940	2180
3.6	51	123	206	329	465	640	813	1020	1260	1490	1810	2050
3.8	42	96	177	294	422	585	749	939	1170	1390	1700	1930
4.0	36	82.	155	261	380	535	690	870	1090	1300	1590	1820
4.2	31	72	136	234	343	488	635	806	1010	1220	1500	1720
4.4	27	63	121	210	311	446	584	746	938	1140	1410	1630
4.6	24	56	108	190	283	408	538	692	873	1070	1330	1540
4.8	21	50	97	172	258	374	496	641	812	997	1260	1.470
5.0	19	45	88	155	23.5	343	457	394	755	933	2190	1400
5.2	17	40	79	142	214	31.5	421	549	701	871	1120	1330
5.4	15	36	1	128	195	287	386	506	648	810	1060	1260
5.6	13	32	63	115	176	260	351	463	594	747	980	1190
5.8	11	2.8	56	102	156	232	315	$4 \mathrm{th}^{6}$	537	679	9017	1110
6.0	8	21	43	79	123	184	252	336	437	360	756	951

US. customary														
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{0}=20 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} v_{\mathrm{tf}} \neq 25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d d}=30 \\ m p h \end{gathered}$	$\begin{gathered} V_{p}=35 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{t d}=4 i \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{a}=45 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=50 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=55 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{0}=60 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=65 \\ \text { mph } \\ \hline \end{gathered}$	$\begin{aligned} & V_{d}=70 \\ & \text { mph } \end{aligned}$	$\begin{gathered} v_{d t}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \text { mph } \end{gathered}$
\pm (\%)	R (ft)	$R(f t)$	8 (ta)	$R(f t)$	R $\{$ 挂	$R(\mathrm{ft})$	$R(\mathrm{ft})$	$R(t)$	$R(\mathrm{t})$	R (ft)	R (ti)	R(侄)	$R(\mathrm{ft})$	$\mathrm{R}(\mathrm{ft})$
NC	868	1580	2290	3130	4100	5230	6480	7870	9410	11100	12600	14100	15700	17400
R5,	614	1120	1630	2240	2950	3770	4680	5700	6820	8060	9130	10300	11500	12900
2.2	543	991	1450	2000	2630	3378	4190	5100	6110	7230	B200	9240	10400	11600
2.4	482	884	1300	1790	2360	3030	3770	4600	5520	6540	7430	8380	9420	10600
2.6	430	791	1170	16.10	2130	2740	3920	4170	5020	5950	6770	7660	8620	9670
2.8	384	729	1.050	1460	1930	2490	3110	3800	4580	5440	62 co	7030	7930	8910
3.0	341	635	944	1320	1760	2270	2840	3480	4200	4990	5710	6490	7330	8260
3.2	300	566	850	1200	1600	2080	2600	32×10	3860	4600	5280	6010	6810	7680
3.4	256	498	761	1080	1460	1900	2390	2940	3560	4250	4890	5580	6340	7180
3.6	2c9	022	$6 \% 3$	972	1320	1740	2190	2710	3290	3940	4540	52.10	5930	6720
3.8	176	358	583	864	1190	1590	2010	2490	3040	3650	4230	4860	5560	6320
4.0	151	309	511	766	1070	1440	1840	2300	2810	3390	3950	4550	5220	5950
4.2	131	270	452	584	960	1310	1680	2110	2590	3140	3680	4270	4910	5620
4.4	116	238	402	615	868	1190	1540	1940	2400	2920	3440	4010	4630	5320
4.6	102	212	360	555	788	1090	1410	1780	2210	2710	3220	3770	4380	5040
4.8	91	189	324	502	718	995	1300	1640	2050	2.510	3000	3550	4190	4790
5.0	82	169	292	436	654	911	1190	1510	1890	2330	2800	3330	3910	4550
5.2	73	152	264	413	595	833	1090	1390	1750	2160	2610	3120	3690	4320
5.4	65	136	237	373	340	759	99.5	1280	1610	1990	2429	2910	3460	4090
3.6	58	121	212	335	487	687	903	1160	2470	1830	2230	2700	3230	3840
5.8	51	106	186	296	$43 \pm$	611	806	1040	1320	1650	2020	2460	2970	3560
6.0	39	81	144	231	340	485	643	833	1060	1330	1660	2040	2500	3050

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain					ifte							S.	sto	ar			
	Maximum Grade (\%) for Specified Design Speed (km/h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	80	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rofling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detalled discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft$]$ of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximmm grades for rural arterials. When vertical curves for stopping sight dis-
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becatse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sight distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Metric				U.S. Customary			
Design Speed (km/h)	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
		Calculated (m)	Design (m)			Calculated (C)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

40 MPH DESIGN CRITERIA

BY: NVA
CHK'D BY: JDW DATE: TE: $-\frac{3 / 18 / 2020}{4 / 1 / 2020}$
CHK'D BY: JDW
(1) DESIGN CRITERIA MATRIX

MPMS NO.
SR 28 \qquad
\qquad Jefferson \qquad COUNTY
SEC N/A, Clarion _COUNTY

2 PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to l-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N)
N

design designation

RT 28
DESIGN CRITERIA Reconstruction
(4) traffic data

OPENING YEAR ADT (Average Daily Traffic) 7196 (2019)
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Suburban Neighborhood
DESIGN YEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 745
D (Directional Distribution) 52
TOPOGRAPHY Rolling
REMARKS Distant, PA
T (Truck Percentage) 8
North from New Bethlehem

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED VALUE	PROPOSED Value	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			40 MPH	35-40 MPH	40 MPH	Yes	DM-2, Table 1.3	
Lane Width			11'	11'-12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			3'-8'	8'-10'	8'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			N/A	38'-44'	N/A	N/A	DM-2, Sec 1.2C	
Minimum Horizontal Radius			600'	340'-485'	600'	Yes	AASHTO, Table 3-9	Entering Distant, PA
Maximum Superelevation Rate			Varies	6.0\%	6.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		1.50\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 83
	Maximum		6.90\%	6.00\%	6.00\%	Yes	AASHTO, Table 7-2	line segment 81
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	250'-305'	305'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	390'-445'	445'	Yes	AASHTO, Table 9-6	
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2, Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	N/A	N/A	DM-2, Table 2.2	

*Refer to Publication 10X, Design Manual 1X, Appendix P for more information on controlling criteria and design exceptions.
6 Any pedestrian and bicycle concerns/needs? Explain.
Any ADA compliance issues? Explain
Any transit issues? Explain
Any additional design issues? Explain

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-9. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=6 \%$

	$\begin{aligned} & V_{a}=20 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=30 \\ & k m / h \end{aligned}$	$\begin{aligned} & V_{o j}=40 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=60 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=70 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{o}=80 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=90 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{gathered} V_{d t}=100 \\ k m / h \end{gathered}$	$\begin{aligned} & V_{\sigma}=310 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=120 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=130 \\ & k \mathrm{~m} / \mathrm{h} \end{aligned}$
$e(\%)$	$R(m)$	$R(\mathrm{~m})$	R (m)	$R(\mathrm{~m})$	B (m)	$8(m)$	$n(m)$	$8(\mathrm{~m})$	$R(\mathrm{~m})$	8 (m)	$R(\mathrm{~m})$	$R(m)$
NKC	194	421	738	1050	1440	1910	2366	2880	3510	4060	4770	5249
RC	138	299	525	750	1030	1380	1710	2090	2560	2970	3310	3880
2.2	122	265	465	668	919	1230	1530	1880	2300	2670	3160	3500
2.4	109	236	415	599	825	1110	2380	1700	2080	2420	2870	3190
2.6	97	212	3.12	540	746	1000	1260	1540	1890	2210	2630	2930
2.8	87	120	334	488	676	910	1150	1410	1730	2020	2420	27.06)
3.0	78	. 176	300	443	615	831	1050	1290	1590	1870	2240	2510
3.2	71	152	26.5	402	561	762	959	1190	1470	1730	2080	2330
3.4	61	133	239	364	511	697	88.	1100	1360	1600	1940	2180
3.6	51	123	206	329	465	640	813	1020	1260	1490	1810	2050
3.8	42	96	177	294	422	585	749	939	1170	1390	1700	1930
4.0	36	82.	155	261	380	535	690	870	1090	1300	1590	1820
4.2	31	72	136	234	343	488	635	806	1010	1220	1500	1720
4.4	27	63	121	210	311	446	584	746	938	1140	1410	1630
4.6	24	56	108	190	283	408	538	692	873	1070	1330	1540
4.8	21	50	97	172	258	374	496	641	812	997	1260	1.470
5.0	19	45	88	155	23.5	343	457	394	755	933	2190	1400
5.2	17	40	79	142	214	31.5	421	549	701	871	1120	1330
5.4	15	36	1	128	195	287	386	506	648	810	1060	1260
5.6	13	32	63	115	176	260	351	463	594	747	980	1190
5.8	11	2.8	56	102	156	232	315	$4 \mathrm{th}^{6}$	537	679	9017	1110
6.0	8	21	43	79	123	184	252	336	437	360	756	951

US. customary														
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{0}=20 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} v_{\mathrm{tf}} \neq 25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d d}=30 \\ m p h \end{gathered}$	$\begin{gathered} V_{p}=35 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{t d}=4 i \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{a}=45 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=50 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=55 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{0}=60 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=65 \\ \text { mph } \\ \hline \end{gathered}$	$\begin{aligned} & V_{d}=70 \\ & \text { mph } \end{aligned}$	$\begin{gathered} v_{d t}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \text { mph } \end{gathered}$
\pm (\%)	R (ft)	$R(f t)$	8 (ta)	$R(f t)$	R $\{$ 挂	$R(\mathrm{ft})$	$R(\mathrm{ft})$	$R(t)$	$R(\mathrm{t})$	R (ft)	R (ti)	R(侄)	$R(\mathrm{ft})$	$\mathrm{R}(\mathrm{ft})$
NC	868	1580	2290	3130	4100	5230	6480	7870	9410	11100	12600	14100	15700	17400
R5,	614	1120	1630	2240	2950	3770	4680	5700	6820	8060	9130	10300	11500	12900
2.2	543	991	1450	2000	2630	3378	4190	5100	6110	7230	B200	9240	10400	11600
2.4	482	884	1300	1790	2360	3030	3770	4600	5520	6540	7430	8380	9420	10600
2.6	430	791	1170	16.10	2130	2740	3920	4170	5020	5950	6770	7660	8620	9670
2.8	384	729	1.050	1460	1930	2490	3110	3800	4580	5440	62 co	7030	7930	8910
3.0	341	635	944	1320	1760	2270	2840	3480	4200	4990	5710	6490	7330	8260
3.2	300	566	850	1200	1600	2080	2600	32×10	3860	4600	5280	6010	6810	7680
3.4	256	498	761	1080	1460	1900	2390	2940	3560	4250	4890	5580	6340	7180
3.6	2c9	022	$6 \% 3$	972	1320	1740	2190	2710	3290	3940	4540	52.10	5930	6720
3.8	176	358	583	864	1190	1590	2010	2490	3040	3650	4230	4860	5560	6320
4.0	151	309	511	766	1070	1440	1840	2300	2810	3390	3950	4550	5220	5950
4.2	131	270	452	584	960	1310	1680	2110	2590	3140	3680	4270	4910	5620
4.4	116	238	402	615	868	1190	1540	1940	2400	2920	3440	4010	4630	5320
4.6	102	212	360	555	788	1090	1410	1780	2210	2710	3220	3770	4380	5040
4.8	91	189	324	502	718	995	1300	1640	2050	2.510	3000	3550	4190	4790
5.0	82	169	292	436	654	911	1190	1510	1890	2330	2800	3330	3910	4550
5.2	73	152	264	413	595	833	1090	1390	1750	2160	2610	3120	3690	4320
5.4	65	136	237	373	340	759	99.5	1280	1610	1990	2429	2910	3460	4090
3.6	58	121	212	335	487	687	903	1160	2470	1830	2230	2700	3230	3840
5.8	51	106	186	296	431	611	806	1040	1320	1650	2020	2460	2970	3560
6.0	39	81	144	231	340	485	643	833	1060	1330	1660	2040	2500	3050

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain					ifte							S.	sto	ar			
	Maximum Grade (\%) for Specified Design Speed (km/h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	80	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rofling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detalled discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft$]$ of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and shonid be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			USS. Custonaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximmm grades for rural arterials. When vertical curves for stopping sight dis-
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becatse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sigh distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Merric				U.S. customary			
Design	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
Speed (km / h)		Calculated (m)	Design (m)			Calculated (t)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn feft onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

45 MPH DESIGN CRITERIA

BY: NVA	DATE: $\frac{3 / 18 / 2020}{1 / 2020}$
CHK'D BY: JDW	

DESIGN CRITERIA MATRIX

(1)

MPMS NO \qquad $\frac{N / A}{\text { SEC N/A }}$ Armstrong
SR 28 $\overline{\text { SEC } \ldots \mathrm{N} / \mathrm{A}}, ~$ Clarion COUNTY

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to I-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N) N

DESIGN DESIGNATION

DESIGN CRITERIA Reconstruction
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Rural
TOPOGRAPHY Rolling
REMARKS North of SR85, between New
Bethlehem and Hawthrone, North of Summerville
(4) TRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 7349 (2019)
DESIGN YEAR ADT (Average Daily Traffic) 8450
DESIGN YEAR (for Design Year ADT) $\frac{2045}{761}$
DHV (Design Hourly Volume) 761
D (Directional Distribution) 59
T (Truck Percentage) 13
\qquad

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-10b. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=8 \%$

Kivisick	登管						S cus							
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{aligned} & V_{d d}=20 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} V_{d}=25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=30 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{d}=35 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=40 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=45 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{t}=50 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=55 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=60 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=65 \\ m p h \end{gathered}$	$V_{d}=70$ mph	$\begin{gathered} V_{d}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \mathrm{mph} \end{gathered}$
e\{\%	R (f)	$R(\mathrm{ta})$	$R(f)$	$R(f t)$	$R(t)$	$\mathrm{R}(\mathrm{t})$	$8(\mathrm{ft})$	$R(f)$	$R(f)$	$8(f t)$	8 (ft)	$R(f)$	$R(\mathrm{f})$	$R(\mathrm{t})$
NC	932	1640	2370	3240	4260	5420	6710	8150	9720	11500	12900	14500	16100	17800
RC	676	1190	1720	2370	3120	3970	4930	5990	7150	8440	9510	10700	12000	13300
2.2	605	1070	1550	2130	2800	3570	4440	5400	5450	7620	8600	9660	10800	12000
2.4	546	959	1400	1930	2540	3240	4030	4910	5879	6930	7830	8810	9850	12000
2.6	496	872	1280	1760	2320	2960	3690	4490	5370	6350	7180	8090	9050	10100
2.8	453	796	1170	1610	2130	2720	3390	4130	4950	5850	6630	7470	8370	9340
3.0	415	730	1070	1480	1960	2510	3130	3820	4580	5420	6140	6930	7780	8700
3.2	382	672	985	1370	1820	2330	2900	3550	4250	5040	5720	6460	7250	8130
3.4	352	620	911	1270	1690	2170	2700	3300	3970	4700	5350	6050	6800	7620
3.6	37.4	572	845	1180	1570	2020	2520	3090	3710	4400	5010	5680	6400	7180
3.8	300	530	784	11100	1470	1890	2360	2890	3480	4140	4710	5350	5030	6780
4.0	277	490	729	1030	1370	1779	2220	2720	3270	3890	4.450	5050	5710	6420
4.2	255	453	678	955	1280	1660	2080	2560	3080	3670	4200	4780	5410	6090
4.4	235	418	630	893	1200	2560	2960	2410	2910	3470	3980	4540	5140	5800
4.6	215	384	585	834	1130	1470	1850	2280	2750	3290	3770	4310	4890	5539
4.8	193	349	542	779	1060	1390	1750	2160	2610	3120	3590	4100	4670	5280
5.0	172	314	499	727	991	1310	1650	2040	2470	2960	3410	3910	4460	5050
5.2	154	284	457	676	929	1230	3560	1930	2350	2820	3250	3740	4260	4840
5.4	139	258	420	627	870	1160	1480	1830	2230	2680	3110	3570	4090	4640
5.6	126	236	387	582	813	1090	1390	1740	2120	2550	2970	3420	3920	4460
5.8	115	216	358	542	761	1030	1320	1650	2010	2430	2840	3280	3760	4290
6.0	105	199	332	506	713	965	1250	1560	1920	2320	2710	3150	3620	4140
6.2	97	184	308	472	669	909	1180	1480	1820	2210	2600	3020	3480	3990
6.4	89	170	287	442	628	857	1110	1400	1730	2110	2490	2910	3360	3850
6.6	83	157	267	413	590	802	1050	1330	1650	2010	2380	2790	3240	3720
6.8	76	146	248	386	553	761	990	2260	1560	1910	2280	2690	3120	3600
7.1	70	135	231	360	518	716	933	1190	1480	1820	2180	2580	3010	3480
7.2.	64	125	214	336	485	672	878	1120	1400	1720	2070	2470	2900	3370
7.4	59	115	198	312	451	62.8	822	1060	1320	1630	1970	2350	2780	3250
7.6	54	105	182	287	417	583	765	980	1230	2530	1850	2230	2650	3120
7.8	48	94	164	261	3.90	533	702	901	1140	1410	1720	2090	2500	2970
8.0	38	76	134	214	314	444	587	758	960	1200	1480	1810	2210	2670

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain																	
	Maximum Grade (\%) for Specified Design Speed (km / h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	B0	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rolling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detailed discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft] of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximum grades for rural arterials. When vertical curves for stopping sight dis -
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becalse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sight distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Metric				U.S. Customary			
Design Speed (km/h)	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
		Calculated (m)	Design (m)			Calculated (C)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

55 MPH DESIGN CRITERIA

BY: NVA	DATE: $\frac{3 / 18 / 2020}{1 / 2020}$
CHK'D BY: JDW	

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to $\mathrm{I}-80$. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area

NHS? (Y/N) N \qquad

DESIGN CRITERIA $\frac{28}{\text { Reconstruction }}$
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Rural
TOPOGRAPHY Rolling
REMARKS Most locations along corridor
except where other criteria is used

STRAHNET? (Y/N) N
(4) TRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 7349 (2019)
DESIGN YEAR ADT (Average Daily Traffic) 8450
DESIGN YEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 761
D (Directional Distribution) 59
T (Truck Percentage) 13

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED Value	PROPOSED VALUE	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			55 MPH	45-55 MPH	55 MPH	Yes	DM-2, Table 1.3	
Lane Width			11'	11' to 12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			6^{\prime}	8' to 10'	8'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			N/A	38^{\prime} to 44'	N/A	N/A	DM-2, Sec 1.2C	
Minimum Horizontal Radius			850'	587' to 960'	960'	Yes	AASHTO, Table 3-10b	North of Summerville
Maximum Superelevation Rate			Varies	8.0\%	8.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		0.20\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 132
	Maximum		7.10\%	5.00\%	5.00\%	Yes	AASHTO, Table 7-2	line segment 157
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	360^{\prime} to 495'	495'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	500' to 610'	610'	Yes	AASHTO, Table 9-6	
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2, Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	16'-6"	Yes	DM-2, Table 2.2	

6 Any pedestrian and bicycle concerns/needs? Explain.
Any ADA compliance issues? Explain
Any transit issues? Explain
Any additional design issues? Explain

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-10b. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=8 \%$

Kivisick	登管						S cus							
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{aligned} & V_{d d}=20 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} V_{d}=25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=30 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{d}=35 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=40 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=45 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{t}=50 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=55 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=60 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=65 \\ m p h \end{gathered}$	$V_{d}=70$ mph	$\begin{gathered} V_{d}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \mathrm{mph} \end{gathered}$
e\{\%	R (f)	$R(\mathrm{ta})$	$R(f)$	$R(f t)$	$R(t)$	$\mathrm{R}(\mathrm{t})$	$8(\mathrm{ft})$	$R(f)$	$R(f)$	$8(f t)$	8 (ft)	$R(f)$	$R(\mathrm{f})$	$R(\mathrm{t})$
NC	932	1640	2370	3240	4260	5420	6710	8150	9720	11500	12900	14500	16100	17800
RC	676	1190	1720	2370	3120	3970	4930	5990	7150	8440	9510	10700	12000	13300
2.2	605	1070	1550	2130	2800	3570	4440	5400	5450	7620	8600	9660	10800	12000
2.4	546	959	1400	1930	2540	3240	4030	4910	5879	6930	7830	8810	9850	12000
2.6	496	872	1280	1760	2320	2960	3690	4490	5370	6350	7180	8090	9050	10100
2.8	453	796	1170	1610	2130	2720	3390	4130	4950	5850	6630	7470	8370	9340
3.0	415	730	1070	1480	1960	2510	3130	3820	4580	5420	6140	6930	7780	8700
3.2	382	672	985	1370	1820	2330	2900	3550	4250	5040	5720	6460	7250	8130
3.4	352	620	911	1270	1690	2170	2700	3300	3970	4700	5350	6050	6800	7620
3.6	37.4	572	845	1180	1570	2020	2520	3090	3710	4400	5010	5680	6400	7180
3.8	300	530	784	11100	1470	1890	2360	2890	3480	4140	4710	5350	5030	6780
4.0	277	490	729	1030	1370	1779	2220	2720	3270	3890	4.450	5050	5710	6420
4.2	255	453	678	955	1280	1660	2080	2560	3080	3670	4200	4780	5410	6090
4.4	235	418	630	893	1200	2560	2960	2410	2910	3470	3980	4540	5140	5800
4.6	215	384	585	834	1130	1470	1850	2280	2750	3290	3770	4310	4890	5539
4.8	193	349	542	779	1060	1390	1750	2160	2610	3120	3590	4100	4670	5280
5.0	172	314	499	727	991	1310	1650	2040	2470	2960	3410	3910	4460	5050
5.2	154	284	457	676	929	1230	3560	1930	2350	2820	3250	3740	4260	4840
5.4	139	258	420	627	870	1160	1480	1830	2230	2680	3110	3570	4090	4640
5.6	126	236	387	582	813	1090	1390	1740	2120	2550	2970	3420	3920	4460
5.8	115	216	358	542	761	1030	1320	1650	2010	2430	2840	3280	3760	4290
6.0	105	199	332	506	713	965	1250	1560	1920	2320	2710	3150	3620	4140
6.2	97	184	308	472	669	909	1180	1480	1820	2210	2600	3020	3480	3990
6.4	89	170	287	442	628	857	1110	1400	1730	2110	2490	2910	3360	3850
6.6	83	157	267	413	590	802	1050	1330	1650	2010	2380	2790	3240	3720
6.8	76	146	248	386	553	761	990	2260	1560	1910	2280	2690	3120	3600
7.1	70	135	231	360	518	716	933	1190	1480	1820	2180	2580	3010	3480
7.2.	64	125	214	336	485	672	878	1120	1400	1720	2070	2470	2900	3370
7.4	59	115	198	312	451	62.8	822	1060	1320	1630	1970	2350	2780	3250
7.6	54	105	182	287	417	583	765	980	1230	2530	1850	2230	2650	3120
7.8	48	94	164	261	3.90	533	702	901	1140	1410	1720	2090	2500	2970
8.0	38	76	134	214	314	444	587	758	960	1200	1480	1810	2210	2670

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain																	
	Maximum Grade (\%) for Specified Design Speed (km / h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	B0	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rolling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detailed discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft] of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximum grades for rural arterials. When vertical curves for stopping sight dis -
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becalse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sight distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Metric				U.S. Customary			
Design Speed (km/h)	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
		Calculated (m)	Design (m)			Calculated (C)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

APPENDIX D

Stakeholder Meeting Minutes
 BROOKVILLE
February 26, 2020

FROM RITTANNING TO 1-80

Meeting: Stakeholder Interview Meeting - Brookville
Location: Jefferson County Conservation District
Date: February 26, 2020
Time: 10:00am to 11:30am
Attendees: See attached sign-in sheet
Purpose: \quad The purpose of the meeting was to interview a variety of stakeholders for the Route 28 Corridor Study Project to obtain input from their local knowledge for consideration of proposed improvement within the study.

Discussion: The format of the meeting followed an intial list of questioned provided to the stakeholders to guide the discussion. This list provided a general outline of project specific question regarding the use, operation and safety within the Route 28 Corridor. The following information provided a summary of the stakeholders input at the meeting and discussion:

- Traffic signals are not synchronized, and during an emergency detour situation, can cause traffic congestion. Presently, municipalities control them, but it would be good if a centralized authority made up of various stakeholders had operational control during emergencies.
- When traffic is detoured on I-80, some vehicles don't use the posted detour, and a lot of traffic is converging in Brookville at the intersection of SR 28 and US 322 near Sheetz. When I-80 is detoured, need coordination in Brookville due to traffic gridlock at that intersection.
- There is no parallel route for l-80 closures, people don't realize the detours and cell phones will just bring them right back into the detour. It was suggested to install message boards on parallel routes to control traffic on SR 28.
- Recently, a tanker had an accident on I-80, and traffic was detoured to SR 28. Traffic was at a standstill for hours and hazardous material freight was coming off the interstate onto SR 28 which creates potential for accident or contamination that close to the Red Bank Creek. There is a need for a spill response team or plan along the corridor.During detour traffic, it is also extremely difficult for local emergency vehicles to get through the detour congestion since the shoulders on the corridor are so narrow. They cannot bypass the traffic.
- I-80 has no signage to show that SR 28 leads to Pittsburgh, and the Pittsburgh Airport.
- Many accidents occur from the Brookville Borough line to Snyder Road.
- Coder Road experiences accidents with commercial vehicles turning into Coder Road.
- There are landslides that occur north of Summerville.
- There are issues on Anderson Creek Road with commercial vehicles in the wintertime getting stuck on the top of the hill due to the steep grade.
- The Redbank Creek runs parallel to SR 28. The main concerns are with its proximity to the roadway, including potential for hazardous materials spills, flooding, ice jams, and narrow shoulders around the Summerville area.
- I-80/SR 322/SR 28 is a potential economic hub/area for development that would benefit from improved alignment and traffic conditions.
- Mendenhall Road is a safety concern due to sight distance/blind curve.
- Mayport Road is a safety concern as trucks have difficulty turning here due to the skew of the intersection, which is compounded by poor sight distance caused by the hill and the curvature of the roadway.
- Amy Kessler asked the question if there would be an increase in freight traffic due to the Shell Pennsylvania Petrochemicals Complex in Beaver County (cracker plant). The consensus was there would not be significant changes, though some minor manufacturing trips to process the plastic pellets could use the corridor.
- Since the turnpike tolls are high, and some trucks use 28 as a connector. This increases commuter and truck traffic on SR 28. Fuel tax is also too high. Many trucks will drop down to take 68 and pay the lower gas tax in Maryland.
- The issue with possible tolling of major highways and its implication on SR 28 was discussed.
- The Potters Mills project further east on US 322 was discussed. It was the consensus that when this project is complete more traffic that would use the Turnpike will instead be using SR 28 as an alternate route since it's a better connection.
- Jefferson County PennDOT maintenance stated that there are several crash clusters along SR 28 due to hills and curves. They also reiterated that congestion becomes an issue when traffic is detoured from I-80, but vehicles are following GPS instead of the posted detour. Noted a need for coordinated overhead messaging signs. Transporting a sign out from the

District office to tell people to stay on the detour route takes too long to be efficient at moving people before it becomes gridlock.

- There is inconsistency in speed limit and prevailing speed on SR 28 for the length of the corridor.
- The Redbank Valley Trail does not have good connections to Route 28. There is a lack of signage denoting where the trail can be accessed. The current trail crossing north New Bethlehem is perceived as particularly challenging.
- The Mayport curve was discussed as having sight distance concerns.
- The Baxter curve was discussed as having issues due to geometry and sight distance. Trucks also speed through Baxter. A possible improvement would be Baxter and Summerville widening and flattening the existing curves.
- It was mentioned that cell phone coverage along SR 28 is inconsistent, which could cause concerns for vehicle breakdowns and for those following GPS.
- Miller Transportation indicated they have daily deliveries on the corridor and speed is an issue for them. They would like to see a 4-lane roadway from Brookville to Kittanning as they are expecting deliveries to grow.
- The Conservation District indicated that water quality and spills were a major concern with the potential for increased traffic and the frequent use of Route 28 as a $1-80$ detour route.
- Amy Kessler asked about truck parking on the corridor. Generally the consensus was that truck parking presents little concern along the corridor. No one noted designated or unofficial locations of truck parking overnight on the corridor. The representative of the local freight community said that more shippers are providing overnight amenities at their facilities due to the new regulations. Haulers are also considering changes to their hours of operation to take shipments to more effectively meet the regulations.
- Hazen interchange was discussed as a possible future development project that could impact the traffic on SR 28.
- ATV crossings were noted along SR 28. ATV signs in the area around Dewey Road.
- In general, school bus stops along the corridor are hazardous, particularly where there is a 3-lane section with a passing lane. Cars will pass school buses even when they are supposed to stop. For example, south of Coder Hollow, a bus stop is located where the 3 -lane road begins. Not an ideal place for a bus stop as people are speeding to get to the 3 -lane road and pass slower moving vehicles.
- The guide rail is thought to be insufficient in Summerville and Baxter because you are so close to the water. It was noted that in recent years, a vehicle ran off the road and a woman drowned in the creek.
- In the summer, farming equipment using the road south of Summerville and throughout the corridor often slows traffic.
- The following tourism draws were discussed:
o Cooks Forest draws a lot of traffic from Pittsburgh
o Trout season
o Deer Season
o Poker Runs
o Peanut Butter Festival
o Historic Brookville
o Laurel Festival
o Several festivals in the summer
o Hazen Flea Market
o Autumn Leaf Festival
- Companies located along the corridor are doing their own shipping which increases the number of trucks on the road. Logging company employs independent drivers.

A list of action items was developed to summarize the stakeholders input and potential improvement areas within the study. The study team will further evaluate these stakeholder concern locations with our existing conditions, crash history, geometric conditions, public input, and operational conditions. The stakeholder action items to be considered are listed below:

Action Item List:

- Determine existing Variable Messaging Signing (VMS) that exists on I-80 and its proximity to the Route 28 Corridor.
- Further discuss areas where VMS placement along the corridor at strategic locations may provide helpful information during an I-80 emergency detour for travelers to consider prior to entering into congested areas to reduce gridlock. Also, this could serve as advanced warning for winter weather events or incidents along Route 28.
- Evaluate potential directional signing updates along I-80 to indicate that Route 28 connects to Pittsburgh and the Pittsburgh International Airport.
- Potential areas where emergency responders may have difficulty getting through congested areas during the use of Rt 28 as an I-80 detour route.
- Further investigate specific concerns noted by stakeholders at the following locations:
- Brookville Borough line to Snyder Road
- Route 28 near the Redbank Creek near Summerville
- Mendenhall Road sight distance
- Route 28 and Mayport Road sight distance/truck turning concerns with entrance skew
- Summerville and Baxter potential for deficient guide rail

The meeting was adjourned at approximately 11:15 a.m. by thanking the stakeholders for their feedback and time.

Prepared by:

McCORMICK TAYLOR, INC.

Copies:
Attendees
MT Project File

Attachments:

Meeting Sign-in Sheet

Ruve atars	Cic		
Ryan Gordon	spe		
Tom Serde	Mohoun JTwp	tonserdle e yaho	814-319-5600
Terry Beamer	Hawthan		
heen Blalin	Mahoving twp		814-221-9819
Whalinda Li4tre	Hawthorn Boro.		814-319-3401
ERIC SIMRO	Pspketomening	ESTMROC PA. GOL	724-543-2011
Tave Temaiwice	Panndot Pisterct 10	Domuswicke PA. 60 V	7243572845
Rrist' Ancto	Clarion Co. Plamina		814-226-4000, $\times 2800$
Reith Schneectergest	Makhoing Tup Arms		$8,4-229-5441$
Gurdon Borraus	New Bethlehan Moyor	moyor eNarsethletwas	$814-275-2003$
Jool Climpr.	Corrin Cand, Pmpor	joliypoopa ga	814 226 -8200
Sandy mateu	Neen Bath Row bil	scunater (lagmail.cons	814-275-1718
Ashley Tracy, Tost Sp	-	lock, Wary Eberha	+1 Clopet To

fROM RITTANNING TO I-80

Meeting:	Stakeholder Interview Meeting - New Bethlehem	Date:	February 26,2020
Location:	New Bethlehem Public Library Community Room	Time:	1:00pm to 2:30pm

Attendees: See attached sign-in sheet

Purpose: The purpose of the meeting was to interview a variety of stakeholders for the Route 28 Corridor Study to obtain input from their local knowledge for consideration of proposed improvement within the study.

Discussion: The format of the meeting followed an intial list of questioned provided to the stakeholders to guide the discussion. This list provided a general outline of project specific question regarding the use, operation and safety within the Route 28 Corridor. The following information provided a summary of the stakeholders input at the meeting and discussion:

- The pedestrian crossing at Redbank Valley School is challenging with fast-moving vehicles nearby and many pedestrians. Vehicles typically park across SR 28 from the school and children cross SR 28 to get to their parents. They would like to evaluate a sign and/or traffic signal.
- The trail crossing is under PUC authority because it's a railbanked corridor. The crossing is particularly difficult and would benefit from signing in advance of and at the crossing, flashing lights, as well as a realignment of the trail so that it is perpendicular to the road and shortened, instead of crossing at a diagonal. The painted crosswalk across SR 28 was removed due to driver complaints, but the location has anecdotally had numerous accidents with folks driving off the road.
- The question was also posed if the restrictions on Tourist Oriented Directional Signing (TODS) could be lessened. The town would benefit from markers for economic development of businesses on trail, including B\&B's, as well as for parking areas.
- There may be trail counts done by the Redbank Valley Trail Association, though most counters have been damaged or stolen. Study team will look into obtaining previous counts taken of the trail users.
- The Mahoning Township supervisors mentioned a study that was done to look at locations for the trail or roadway in front of Nolf Chrysler, that would side cut the hill, flatten the trail past Chrysler but there was a wetland issue that stopped the study moving forward. Wetland mitigation was mentioned as a potential solution for the project. Study team will look into obtaining this information.
- Redbank Valley High School has issues with pedestrians crossing the street during the school dismissal hour at 3:10pm. Parents park in the Subway and Chiropractor parking lots and then jump onto Route 28. They said there is plenty of parking in the back of the school, but that parents and students don't want to use it. They have crossing guards but are curious if a traffic signal could help. It's primarily drivers, with some walking students crossing to walk down the trail to get back to their homes. Dr. Mastillo, superintendent of the Redbank Valley School District, was supposed to attend but could not at the last minute, study team will follow up with him.
- It was discussed that congestion becomes an issue when traffic is detoured from I-80 but vehicles are following GPS instead of the posted detour.
- There is a operational concern at the SR 28/SR 66 intersection when trying to detour trucks due to geometric constraints. Trucks frequently hit the building and traffic signals at this location. The pole has been hit 8 times since the pedestrian ramp was installed. One day there was a bollard, but it kept getting hit and never came back. Cars also regularly pull beyond the stop bar and this creates congestion because trucks cannot navigate the turn with them there.
- Generally, the PSP has issues along SR 28 due to hills, climbing lanes (or lack of) needed at Hogback Hill and Orchardville Hill toward Exxon Station to Baum Pump Station. Other issues include snow, trucks that get diverted from I80, and speeding along the corridor.
- PSP said speed along Route 28 is a safety concern, but there is not a high rate of crashes in this area of Route 28 if you compare it to the lower portion of Route 28.
- There is a choke point at the bridge in New Bethlehem over Redbank Creek which causes congestion. Any major crash, spill, or slide would wreak havoc on the transportation system because there is no way around it. The transportation system is very limited in this area.
- It was indicated that there should be improvements to the crosswalks throughout New Bethlehem and Hawthorn.
- Speed is an issue at the mini mall. The speed limit is 35 mph in one direction and 25 mph in the other. PennDOT mentioned that it should not be signed differently in opposing directions, and that the roadway needs to meet certain requirements to be posted at 25 mph , including $85^{\text {th }}$ percentile speed and residential density.
- There was another speed limit difference noted in Hawthorn, where it is 45 mph in one direction and 35 mph in the other. PennDOT again stated that it should not be signed as such.
- Along SR 28 from Kittanning, there are issues with erosion which is causing the guiderail to shift.
- Generally, the Redbank Creek runs along SR 28 too close to the road (horizontally and vertically) and during the winter months, ice jams cause issues over the roadway, including flooding. It was suggested that the stream needs to be dredged in some areas to remove debris. The Leisure Run flood is still being cleaned up.
- The 3-lane roadway ends at the Mahoning Creek Bridge.
- There is a 55/40/55 speed differential through difficult geometry which makes traveling through Distant difficult.
- A northbound turning lane begins where a passing lane ends at the crest of a hill at Calhoun School Road. This poses a safety concern for potential rear end and head on collisions. People think this is an extension of the passing lane and use it for passing.
- There is an ice cream shop directly adjacent to SR 28 that is very popular near Distant. Distant Dairy and Dollar General have a lot of traffic and generate pedestrians close to the roadway. Dollar General is noted as a difficultarea to pull out of due to blind curves. Some places in Distant lack sidewalks.
- There are rockslide and hill side erosion issues along the corridor which occur frequently and in many places.
- The intersection of SR 28 and SR 536 Mayport Road has deficient sight distance.
- Smucker's currently has access issues to their plant that could be addressed with a future project. In particular, the intersection of Wood and Penn poses an issue for trucks driving to Smucker's having to use local roads. Trucks get trapped and end up driving into people's yards and break the curb and sidewalk. They would like to see Smucker's have their own access road, but a study was done in the past and there was possibly a problem with sight distance that could not be overcome. Ms. Amato was involved with the Economic Development Commission with this study. The study team will obtain a copy.
- New Bethlehem Borough provided a list of issues that are included as an attachment to this summary.
- The passing lane at Distant is not long enough coming up the hill, then you hit 40 mph , and $\operatorname{SR} 1004$ is a quick turn with poor deceleration length.
- Upper/Lower Hayes at 28, and South Main Street could use a turn lane to separate turning vehicles from the general through traffic.
- Parking near the Sunoco/Key Beverage on Broad Street causes issues for traffic traveling WB turning into Sunoco. It could use a turn lane or restrict some parking closer to the area to provide room to turn into these businesses.
- There is acid mine drainage from Summerville to Moore Road in Corsica.
- On the 3 lane sections of SR 28, it has been noticed by PSP that vehicles in the opposing outermost lane do not stop for school buses when they legally are required to.
- There are sight distance issues at the PennDOT maintenance/school bus turnaround location at the Jefferson County line.
- The sidewalks in Distant and South Bethlehem are in poor condition.
- It was suggested that turning lanesare needed at Sloan Hill Road and Calhoun Crest.
- There are little to no issues with freight loading in the downtown New Bethlehem area. There aren't many places that freight has to stop.
- The following tourism draws were discussed:
o Redbank Valley Trail
o Redbank Creek during trout season
o Bed and Breakfast locations
o Local campgrounds
o The County Fair at the end of July is a large traffic generator
o Poker Runs (ATV event)
o Peanut Butter Festival
o Friday night football games
o Deer season
o I-80/SR 28 in Brookville is a route to the Pittsburgh International Airport
The meeting was adjourned at approximately 1:15 p.m. by thanking the stakeholders for their feedback and time. A list of action items was developed to summarize the stakeholders input and potential improvement areas within the study. The study team will further evaluate these stakeholder concern locations with our existing conditions, crash history, geometric conditions, public input, and operational conditions. The stakeholder action items to be considered are listed below:

Action Item List:

- Consider potential for climbing lanes at Hogback Hill and Orchardville Hill toward Exxon Station to Baum Pump Station.
- Consider potential/need for alternate route to bypass bridge in New Bethlehem over Redbank Creek during an incident.
- Consider designated crosswalk improvements for consistent and safe pedestrian access across Route 28.
- Obtain trail counts and previous studies on crossing locations performed by the Redbank Valley Trail Assocation.
- Obtain Smucker's access study for consideration.
- Connect with school superintendent separately to note New Bethlehem School District's concerns along the corridor.
- Document areas of inconsistent speed limits along Route 28 and in certain area in NB and SB directions.
- Investigate potential narrow shoulders or flooding issues where Redbank Creek is close to Route 28.
- Consider potential turning lanes at Upper/Lower Hayes Road and at South Main Street.
- Consider pedestrian access and sidewalks in Distant and South Bethlehem.
- Consider improvements at Sloan Hill Road and Calhoun School Road to improve sight distance and safety.
- Further investigate specific concerns noted by stakeholders at the following locations:
o Pedestrian crossing at Redbank Valley High School.
o Redbank Trail crossing at Route 28.
o SR 28/SR 66 intersection geometric improvements for trucks to navigate the intersection.
o Calhoun School Road where the northbound passing lane ends at the crest of a hill and stops in a turning lane.
o Pedestrian connections and sight distance at Distant Dairy and Dollar General.
o SR 28 and SR 536 Mayport Road and potential improvements to address deficient sight distance.
o Hogback Hill potential lengthening of passing lane coming up into Distant.
o Jefferson County line PennDOT maintenance/school bus turnaround location sight distance issues.

Prepared by:

McCORMICK TAYLOR, INC.

Attachments:

Meeting Sign-in Sheet
Borough of New Bethlehem Identified Areas of Concern
Photos of Meeting

Rt 28 improvements/Corridor Study Comments - Sandy Mateer, 814-275-1718, VP of New Bethlehem Borough Council and President of Redbank Valley Trails Association

Starting at SR 28/66 at intersection with Rt 85 and Clearfield Pike. (Mile 0)

1. From Mile 0 north - replace guardrails, reduce litter and inspect erosion of northbound side lanes. Some areas are very narrow and don't allow much room for snow removal. The creek alongside some areas is plugged with debris which may cause road to flood in low areas. Consider dredging and deepening water channel.
2.3 miles up at Pine Creek Church - needs intersection improvements
2. 4 miles up - guard rail appears to be collapsing from hillside erosion.
3. 5 miles up - from Ridge Road to Exxon station and beyond to church. Deer fences might prevent some accidents and plantings might cut some windblown snow from impacting the road. Same comment at around 9 and 10 miles up to old New Bethlehem Wesleyan school area.
4. Dayton Road intersection needs improvement.
5. 11 miles up - the truck stop needs more signage for truckers to let them know about Hogback hill and speed limits.
6. 14 miles up - There needs to be more notice for the lane reduction on the hill and placement of the reduction needs to be reviewed in connection with oncoming (southbound) traffic.
Southbound there or previous area where lane reduces the reduction ends at the top of a hill on a curve.
7. Dollar General in Distant - Sight distance is horrible and a bad accident waiting to happen. A different access point should be considered or more warning signage or speed restrictions should be considered.
8. Distant - sidewalks should be considered to improve pedestrian access.
9. Sidewalks in South Bethlehem Borough are in terrible condition and deter pedestrian use.
10. Signage for trail access should be less restrictive and less costly so that more directional signs can be added for tourism attraction.

Within New Bethlehem Borough - Improve all cross walk signals in Borough and add stop for pedestrian signage.

12. Corner of Broad (28/66) and Wood (66).

a. Move the stop line and treadles for both through and left turn north to Wood back to allow trucks turning west on Broad Street from Wood St to make the turn with out having to worry about running into vehicles stopped to turn north on Wood St. from Broad St.
b. Remove two existing traffic light poles at NW and SE corners and install one double armed traffic light pole on southwest corner of Broad and Wood to handle all traffic so that damage to
current light poles and building is eliminated. NW corner traffic pole and it or the protective post have been hit numerous times by trucks and continue to be hit almost once a month. This has occurred more frequently since August 2018 when Penn Dot removed the old curbs and put in flat handicapped accessible curbs. The Borough has installed signage and delimitators in an attempt to keep trucks from cutting the corner too tightly. The pole has been replaced once since then in 2019 and has been hit at least twice again since replacement. We were informed that we can't replace the pole again because of new regulations and that the new pole will cost at least $\$ 300,000$. The existing NW pole foundation is near utility lines for the Bish Chiropractic/Laurel Eye building on the corner which has also been hit by trucks.

July 2, 2007 - building support pole on NE corner was taken out. Building on west side is the Bish Chiropractic building and pole is at middle top of photo.

2018-2020 damage:

13. Broad Street in $\mathbf{1 0 0}$ block. Consider putting in a turn lane from Liberty St. east to at most Maple Street so that traffic can turn into the beer distributor or gas station whether going east or west on Broad St. This might entail eliminating parking on south side of Broad St. from Liberty to Maple or maybe on the north side for part of the distance.
14. Broad/Rt. 28 from Wood (66) to eastern Borough limit. Make the speed limit 25 on both sides of the street for safety of pedestrians, customers of businesses and speed monitoring, as 25 mph is the speed limit on Broad from Wood west to Liberty Street.
15. Lincoln and Broad Street. Consider recommending that Lincoln be made one way Northbound at Post Office because of sight distance issues with car parking along north side of Broad.

16. 500 Block of Broad Street.

a. Work with Smuckers and Redbank Valley Trails Association to create a truck access to plant parking area directly from SR 28 to limit need for trucks to use only current access via Broad and Wood intersection, Wood and Penn (SR 861) intersection, 1920s bridge over Leasure Run on Penn Street and Penn Street residential area. Keep in mind that the corridor is railbanked so that nothing can be done to corridor to prevent rail from returning.

b. Improve drainage under SR28 at Vine Street bridge for Leasure Run.

17. SR 28 east of Borough Line through Redbank Township to Fishbasket curve

a. Improve drainage facilities under 28.
b. Mitigate flood and ice jam damage by dredging creek to deepen channel and perhaps armoring the channel. This might prevent closure of SR 28 in high water and ice jam situations.
c. Invasive species remediation - Bank is lined with Japanese Knotweed which causes erosion and prevents other native plants from growing.

18. Fishbasket Curve

a. Work with Redbank Valley Trails Association and PUC to improve crossing. Keep in mind that the corridor is railbanked so that nothing can be done to corridor to prevent rail from returning such as major changes to grade without PUC and Buffalo \& Pittsburgh Rail Road approval. Suggested improvements include a flashing light triggered by trail users from either direction toward crossing. Move the crossing slightly to the west to shorten the crossing distance instead of being on a diagonal. Add additional signage in both directions at further distance than existing signage to indicate trail crossing ahead. Consider crosswalk markings.
19. Hawthorn - allow directional signage to trail before and/or at Walker Flat Road.
20. Shannondale Flats - Speed and intersections are a concern.
21. Summerville - Carrier Street - allow directional signage to trail before and at Carrier Street in both directions.
22. Summerville to Moore Road - There appears to be a lot of acid mine drainage coming from hillside that drains along the road and then works it way into the Red Bank Creek.
23. Moore Road - allow directional signage to trail before and/or at Moore Road in Corsica in both directions.
24. South Main Street, Brookville - Consider adding a turn lane on sharp town to S. Main Street leading to hospital.
25. Main Street/322 intersection - Allow directional signage to trail before and at intersection from both directions.
Stakeholder Outreach
INTERVIEW INVITATION SIGN IN SHEET
KITTANNING
February 26, 2020

NAME	ORGANIZATION	EmAIL	PHONE
			$724<545-7142$
Allie Penci	Hrustrona (u. Plannincar	arpenca@co.armstong.	Us 724-548-3734
Carmer Suhnsin	$\text { Pluvinuy a } D_{\text {evolj, inewt }}$		124.548 .3221
Tomatacicil	Pennuo Driacta 16	DTomaswicke Pa ho	7243572845^{\prime}
BML C loak	Poggs Typ finerap	WCST87 @c/atho.m	7249546791
vide Pozzuto	kstronschambe	Ukic	24:224-3
Mille coonl	ARM. W. Ecjunat DEV	why Cusa	07 U: 724348
steven Bakka	Kottanning Tupp VFD	stelibakor yahco.	724-664-3995
Keith Bowscic	Beacligaus Ex.	Meithencolisensice	724-525-3562
Audy Rradic	Bradigan's Iac	andy e bradiyausica	$734-505-8956$
Jaso- O-to	ACMH	jason. ortone And.ary	\$ 412.491 .9256
stin Nold.	Arm. Co. Econ Dev	irnoideroco armstrong pa	us $724-548-1500$
Ryan Gordon, Aswley Tro	hau, kari shedlock, W	Eberhart (Proiect Ted	

FROM RITTANNING TO 1-80

Meeting:	Stakeholder Interview Meeting - Kittanning	Date:	February 26, 2020
Location:	The Belmont Complex	Time:	$4: 00 \mathrm{pm}$ to 5:30pm
Attendees:	See attached sign-in sheet		
Purpose:	The purpose of the meeting was to interview a variety of stakeholders for the Route 28 Corridor Study Project.		

Discussion: The following outlines the highlights of the discussion:

- The concerns expressed by the EMS/Ambulance representative were that the hills and geometry of SR 28 present a challenge in getting patients to the most appropriate local hospital. The Armstrong Hospital has advanced cardiac technologies that other local hospitals do not, and many times flights are needed to get patients to the Armstrong Hospital.
- Truck traffic presents an operational and safety concern due to speed differentials between cars and trucks. Many times, vehicles pass slow moving trucks in a no passing zone. Suggested a need for additional truck climbing lanes near Orchardville.
- Spacious Corners / Sloan Hill Road has poor sight distance due to the hill and curve.
- At the top of Hogback Hill at the truck weigh station, sight distance is poor, and trucks are slowing down, stopping, pulling over in this location. Trucks also sometimes don't stop as directed and roll through the brake check area and pull out in front of cars.
- Goheenville - speeding issues are noted. An improved project in this area is currently being designed by PennDOT.
- The concerns expressed by the local trucking company, who delivers heating oil and other seasonal products, were that houses are too close to the road in many locations. Other areas of concern were brake check stops, the Baum Pump Station, and the "tickle turn" by Horse Trader just north of SR 85 that has a sharp turn that is difficult for trucks to maneuver at high speeds. There was a recent project that fixed some geometric issues but the project limits did not address that turn. They would like to see the improvements continued to address the sharp turn.
- The crosswalk at Fish Basket needs to be straight across the road. (This is the New Bethlehem crossing of the Redbank Valley Trail).
- Speeding is a concern at the 15 mph curve in South Bethlehem. Trucks frequently overtrack and sometimes roll over.
- The discussion regarding the traffic models incorporating drawing additional freight traffic from other major adjacent highways such as I-79, I-80, Route 8, and US 119 was discussed. It was determined that the tools to address this quantitatively are limited, so this would be considered qualitatively..
- There are sight distance and access concerns coming out of Oscar Road.
- There is significant congestion in the afternoon in New Bethlehem. Better coordination of the two signals in New Bethlehem was suggested.
- There is a crash history in Distant due to the narrow roadway/shoulders and the stream located so close to the road, north of Wadding Road to Redding Road.
- There is an active slide at the Pine Creek Bridge.
- Other general concerns included narrow shoulders, lack of truck lanes, trout and deer season congestion, Sloan Hill Road blind curve with buses pulling out, sight distance at Lower Hays to Upper Hays Run, and SR 28 near SR 1035 Oscar Rd needs truck lanes and wider shoulders.
- The following tourism draws were discussed:
o Port Armstrong Folk Fest
o Armstrong Festival
o Arts on Allegheny
o ATV events
o Cooks Forest
o Autumn Leaf Festival
o Peanut Butter Festival
o Proposed ATV Facilities - large scale improvements, Poker Runs, Scrubgrass Run, a big draw

The meeting was adjourned at approximately $5: 15 \mathrm{p} . \mathrm{m}$. by thanking the stakeholders for their feedback and time. A list of action items was developed to summarize the stakeholders input and potential improvement areas within the study. The study team will further evaluate these stakeholder concern locations with our existing conditions, crash history, geometric conditions, public input, and operational conditions. The stakeholder action items to be considered are listed below:

Action Item List:

- Consider EMS provider concerns with Route 28 geometry and access to Armstrong Hospital.
- Consider local freight provider concerns with Route 28.
- Consider a need for additional truck climbing lanes near Orchardville.
- Consider better coordination of the two signals through New Bethlehem.
- Further investigate specific concerns noted by stakeholders at the following locations:
o Sloan Hill Road sight distance.
o Hogback Hill in general at the truck weigh station.
o Route 28 at the Redbank Trail concerns for pedestrians crossing.
o 15 mph curve south of New Bethlehem where trucks frequently overtrack and sometimes roll over.
o Oscar Road sight distance and truck access concerns.
o Lower Hayes Run turning vehicle provisions.
o Discuss with School District separately their concerns along the corridor.
o Coordinate with Armstrong County on planned and potential future developments.

Prepared by:
McCORMICK TAYLOR, INC.

Copies:
Attendees
MT Project File

Attachments:

Meeting Sign-in Sheet
Photos of Meeting

APPENDIX E Survey Questions

Route 28 Corridor Study Wiki-map Survey Questions

01.17.20

ADD PROBLEM OR OPPORTUNITY

1. Select a point type and then place on map.
[Each point type receives a different list of concerns Q4-7]

- Traveling via a car
- Traveling via bike
- Traveling via walking
- Traveling via truck/freight vehicle

2. I use this area for: (Select all that apply)

- Local commuting (Less than 10 miles each way)
- Regional commuting (More than 10 miles each way)
- Business travel (Deliveries, moving freight, etc.)
- Accessing government services
- Accessing Redbank Valley Trail
- Accessing local schools
- Accessing stores, services, goods, healthcare
- Accessing recreational opportunities

3. How frequently do you use this facility?

- Daily
- Weekly
- Monthly

4. What about this location causes you concerns? [CARS]

- Pedestrian Safety
- Cyclist Safety
- Vehicle speeds
- Slow moving vehicles
- Congestion
- Stopping or turning vehicles
- Lack of connectivity
- Interstate access
- Roadway safety
- Drainage
- Parking
- Signal timing
- Roadway or bridge maintenance
- Sight Distance

5. What about this location causes you concerns? [BIKES]

- No shoulder

Route $\mathbf{2 8}$ Corridor Study Wiki-map Survey Questions

01.17.20

- Shoulder is too narrow
- Poor shoulder condition
- Debris
- Lack of bike lane
- Lack of protected bike lane
- Travel lanes are too narrow
- Drainage
- Vehicle speeds
- Roadway safety
- Proximity to large trucks/vehicles
- Connectivity to regional trail system
- Aesthetics

6. What about this location causes you concerns? [FREIGHT]

- Pedestrian Safety
- Cyclist Safety
- Vehicle speeds
- Roadway incline/grade
- No climbing lane on steep grade
- Travel lanes are too narrow
- Intersection too narrow to safely turn
- General congestion
- Stopping or turning vehicles
- Lack of connectivity
- Shoulder width/condition

7. What about this location causes you concerns? [WALKING]

- Sidewalk ends/no sidewalk
- Sidewalk condition
- Pedestrian safety/visibility
- Roadway safety
- No shoulder
- Shoulder condition
- Drainage
- Vehicle speeds
- Proximity to large trucks/vehicles
- Crosswalk
- Sidewalk not Americans with Disabilities Act (ADA) compliant
- Connectivity
- Aesthetics

8. Please explain your concern. (open-ended)

Route $\mathbf{2 8}$ Corridor Study Wiki-map Survey Questions

01.17.20
9. Do you have a photo of this area of concern for us to consider? Please upload it here.
10. Is there any other information you would like us to know about the Route 28 corridor? (openended)

Click submit to return to the map to add any additional problems or concerns.

APPENDIX F

Field Notes

Redbank Valley Trail

The trail is well-supported, has free parking, and even had a few folks using it during the field work day which was approximately a 50 -degree day in January. It was awarded "Trail of the Year 2014". The field work included 3 locations along the trail:

- South Bethlehem trailhead bridge
- New Bethlehem
- Brookeville Depot St Spur

The trail is advertised in Brookeville and New Bethlehem. There is free parking in the north at the Depot Street Spur near Brookville, free parking in downtown New Bethlehem, and a small gravel area in South Bethlehem where a bridge takes you to the trail just west of the 15 mph curve sign (see image). The parking area is limited (see image).

View from the bridge over Redbank Creek

Parking near the trail head is limited

The houses along the trail in New Bethlehem don't appear to have any other access (roadway or sidewalk). There is significant public art and continuous access to the trail throughout New Bethlehem.

Public art invites trail users to stop and explore

Bicycles parked along the trail in New Bethlehem

Some residences along the trail have no offstreet parking

Some residences only access is via the trail

The New Bethlehem trailhead offers bike racks, free parking, a portapotty, and wayfinding signage

Redbank Valley Trail Sign from Brookville
View from Above and Below Trail Overpass in New Bethlehem, which also leads to JM Smucker's Facility

SIGNAGE

Many signs on the corridor have been struck - particularly at SR 0536, SR 85, and US 322. Trucks were observed overtracking due to the tight geometry of the roadway and intersection approaches. A few areas of damaged guiderail were noted. A relatively flat, straight segment of roadway exists between New Bethlehem and Brookville where most of the passing zones are.

Sign damage at SR 536 Mayport Road

Sign damage at SR 85 and at US 322

DOWNTOWN New BETHLEHEM

In downtown New Bethlehem, Route 28 is Broad Street. There are two signals in close proximity, at Lafayette Street and at Wood Street. They appear to operate well. No significant queueing was observed. Both signals had pedestrian signal heads. At Wood Street, some pedestrian heads are outdated and burnt out. Trucks were observed overtracking turning EBL to Route 66 at Wood Street (see image). There are delineators to keep them from coming up on the curb, but not bollards. I had to jump back from the corner as this truck nearly overtracked onto the sidewalk. Lafayette Street crossing is short and easier to cross.

Truck Overtracking at Wood Street in New Bethlehem

Sidewalks and DWS Present, Pedestrian Head Burnt Out

Traffic Signal at Lafayette Street

TRUCKS AND FREIGHT

The Route 28 corridor is home to industry and trucking facilities. Some noticeable include McCauley trucking and warehousing, Glen Gary. There is a noticeable amount of timber hauling in the area. JM Smucker's is in downtown New Bethlehem. At the northern end of the corridor, the Brookville Travel Center provides facilities for trucks using the I-80 and SR 28/SR 36 corridors.
On the field view, steep grades were found in excess of 9%. There is an area for heavy trucks to pull off and stop before beginning their descent. Truck speed limits on the downgrade are posted at 35 mph . The smell of brakes and sound of engine braking was ubiquitous through the mountainous and rolling parts of the corridor. A few hills were noted as good candidates for truck climbing lanes, including the hill near Baum Pump Station/Orchardville, and Hogback Hill.

9\% Grade Next 2 MI

$$
\begin{aligned}
& \text { Pull off for trucks going NB on SR } 28 \text { before the 9\% } \\
& \text { grade }
\end{aligned}
$$

Northbound downhill following

Northbound climbing Iane begins

Trucks at the Brookville Travel Center

Glen-Gary is located at Carrier Street

Timber hauling is a noticeable industry along the corridor

Smucker's Facility in New Bethlehem

SAFETY COUNTERMEASURES

Generally the corridor has centerline rumblestrips, but shoulder rumblestrips were not observed. In most places, the rumblestrips have worn and are not effective.
Curve warning signs often have no advisory speeds and no chevrons.

RETROREFLECTIVITY

The corridor was driven in the evening and the paint and signs varied in retroreflectivity, poor. Most night time reflection comes from bridge and curve delineators. A southbound corridor video is available in nighttime conditions.

Traveling SB on Route 28 north of New Bethlehem

Traveling SB south of New Bethlehem

A typical night-time scene traveling SB on Route 28

SPEEDS

Significant speed differentials were observed along the corridor. Some passenger vehicles were observed speeding, traveling between 65 and 70 mph on 55 mph segments. Improper passing of slow-moving vehicles in non-passing zones was also observed.
Other vehicles, both cars and trucks, were observed driving 510 mph below the speed limit. Speed limits change frequently throughout the corridor, from 55 mph on most sections, to 35 mph through most villages, and 25 mph through New Bethlehem.

15mph Curve Advisory Sign

Speed limit is 35 mph in South Bethlehem

Speed limit drops to 25 mph through New Bethlehem

Speed limit rises again to 55 mph

Sight Distance

Sight distance turning onto Route 28 is limited for many intersections due to horizontal and vertical curvature. Other sight distance obstructions noted include hillsides, guide rail and bridge barriers, trees and brush, signs, and houses. There are many minor intersections along the approximately 40 -mile corridor with sight distance concerns; however, the major intersections that were identified observed during this round of field observations were:

- Sloan Hill Road
- SR 1035 (Oscar Road)
- SR 1004 (Kohlersburg/Madison Rd)
- SR 1025 (Putneyville Road)
- SR 0536 (Mayport Road)
- South Main Street near Brookville

Sloan Hill Road looking north on Route 28

Sight distance limited from crest and guide rail looking north at the stop on SR 1035

Sight distance looking south at the stop sign on $S R$ 1035

Looking southbound on Route 28

Looking northbound on Madison Road

Looking south from the stop

Looking north from the stop

Sight distance looking south from stop at Mayport Rd

Sight distance looking north from stop at Mayport Rd

Main Street Sight distance looking south

Main Street Sight distance looking north

Poverty Hill Road

The intersection of Poverty Hill Road, McGregor Road and SR 28 is a skewed intersection north of the end of the freeway. At this intersection, geometric and roadway conditions were observed. In general, the intersection and surrounding area to the south is relatively flat with some residential buildings, commercial buildings, and billboards. To the north, SR 28 begins a steep climb while Poverty Hill Road has a short, steep grade.

Looking at the roadway conditions, the guide rail in the area was in good condition. The edge of the shoulder is beginning to deteriorate and there is a pothole located on the southwest corner along McGregor Road (see image). Several traffic and roadway signs were located at the intersection including stop signs and weight limit signs on the minor legs.

Heavy truck traffic was observed and there is evidence of overtracking on the corner of SR 28 and McGregor Road. The sight distance to and from McGregor Road appears to be sufficient. The sight distance from Poverty Hill Road was insufficient due to the hills along the road and several residential buildings to the south (see image). Being so close to the end of the freeway, there were no speed limit signs observed northbound on SR 28 but there was a 45 mph speed limit sign on the downhill grade going southbound on SR 28.

Sight line at stop sign from Poverty Hill Road facing south on SR 28

SR 28 AND JaRALY LANE GUIDE RAIL

While traveling north from Poverty Hill Road to Jaraly Lane, roadway conditions were observed. The guide rail along the road was in good condition but some locations had evidence of minor erosion under the guide rail. The shoulders varied in width down to about two feet.

Just south of Jaraly Lane, there is heavy erosion under the guide rail. Along the northbound lanes, the shoulder is beginning to crumble and larger pieces of pavement have broken off from the roadway. There is heavy erosion under the guide rail and around the posts. There is a path under the guide rail of erosion from water. Some of the
guide rail is beginning to lean into the slope (see image).

Erosion and deteriorating shoulder on northbound lanes of SR 28 (looking south)

Along the southbound lanes, the guide rail is in better condition. While some of the posts appear to be leaning into the slope, a section about fifty feet long was reinforced with bituminous material. Minor erosion is evident along the shoulder. The impact attenuator appears to have been replaced recently.

SR 1028 AND SR 28

While travelling north from Jaraly Lane to SR 1028, roadway conditions were observed. Minor erosion along the shoulders were evident along with minor deterioration of the edge of pavement.

At SR 1028, insufficient sight distance was observed. When turning from SR 1028, there
is a stop sign for SR 1028 only. Facing south, SR 28 curves away from SR 1028 and has a steep grade of 8.7% (field measured). The combination of the horizontal curve, downhill grade, and trees limits the sight distance (see image). Facing north, the roadway is relatively flat but there is a small hill and a large tree, which are located at the edge of the pavement. Behind the tree, there is a residential building, which limits sight distance as a vehicle approaches the intersection (see image).

Large tree and Residence at the stop sign on SR1035, facing north on SR 28

Sight line facing south on SR 28
The roadway along $S R 28$ is in good condition but the pavement along SR 1028 is beginning to deteriorate, especially along the edge of shoulder.

NeAR THE ADDRESS OF 742 SR 28 AND 66

Traveling a short distance north from SR 1028, heavy erosion and a large skid mark were observed on SR 28. The erosion along the guide rail on the northbound side is about 125 feet in length and several inches deep. The erosion travels under the guide rail and washes out on the hillside to a creek at the bottom of the hill (see image). The skid mark is along the northbound lanes and is about 75 feet long. It is a single tire width suggesting a car or pickup caused it.

Heavy erosion on Section 742 of Route 28 from edge of pavement down to stream

CRISSMAN LANE AND SR 28

Traveling north from 742 SR 28, guide rail damage and poor sight distance was observed. The guide rail had evidence of damage from a vehicle brushing the guide rail and from large branches falling on top of the guide rail. The sight distance was limited due to horizontal curves and skewed intersections with local roads. The large cut slopes along the roadway looked to be in good condition with minimal erosion. The area was mostly farm or residential with some community centers such as a church and a school.

Just north of Crissman Lane, there is a large section of damaged guide rail. The slope was reinforced with bituminous material and large
rocks. The guide rail posts are beginning to slide down the slopes and are out of line. Washouts and erosion are present under the guiderail and along the shoulder (see image).

Damaged guide rail and slope repair

SR 1035 AND SR 28

Traveling north from Crissman Lane, poor sight distance at intersections with local roads and driveways and reinforced rock slopes behind the guide rail were observed. The shoulders along SR 28 vary in width and at times are about two feet wide.

At the intersection of SR 1035, SR 28 is curving away from SR 1035 with a cresting vertical curve just north of the intersection. Looking right from SR 1035 approach, there is poor sight distance due to guide rail along the northbound lanes of SR 28, which is higher than the driver's eyes on SR 1035. There is also a cresting vertical curve making it difficult to see any vehicles traveling south on SR 28 (see image). Looking left from SR 1035 approach, there are several trees in the sight line, which limits the sight distance. Along SR 1035, there is broken pavement and recently repaired patches on the shoulders. The guiderail on the northbound side of SR 28, along the curve radius from SR 1035, appears to have damage on the top by a vehicle that did not turn wide enough form SR 1035 to travel north.

Facing north on SR 28 from SR 1035

SR 1004 AND SR 28

Travelling north from SR 1035, the roadway is in good condition. There are some sharp curves and steep grades with truck climbing lanes, but the guide rail is in good condition and there is only minor erosion along the guide rail.

The intersection of SR 1004 and SR 28 is a five-way intersection with a channelized right turn lane from southbound SR 28. The three minor roads converge to one intersection with the channelized right turn lane and a bidirectional lane to SR 28 (see image). The sight distance to and from SR 28 is good from the bidirectional lane and the channelized lane. Approaching the five-way intersection with SR 1004, there is a sharp curve along one of the three minor roads. There is a short distance from this intersection and the travel lanes on SR 28. Approaching the intersection from the south along SR 28, there is a steep grade, which flattens out at the intersection and enters a residential area.

Approaching intersection from SR 1004, facing north. Vehicle is located on bidirectional lane.

15 MPH CURVE IN SOUTH BETHLEHEM

Leaving SR 1004 and traveling north along SR 28, there is a section of damaged guide rail from falling branches. The speed limit also changed several times from 45 mph to 55 mph to 35 mph as SR 28 approaches New Bethlehem.

Entering South Bethlehem, there is a sharp curve with a 15 mph advisory speed at the T intersection of Broad Street (see image). At the intersection, there is damaged guide rail along Broad Street, which is a minor road leading to residences and a Redbank Valley Trailhead. At the two corners of the intersection, there is a gas station with several pumps. Large trucks from single unit trucks to WB-67s were observed to overtrack when heading both north and south along SR 28. When travelling south, trucks generally tracked into the northbound lanes. When traveling north, trucks either oversteered into the southbound lanes or ran over the curb.

Facing east on SR 28 from gas station

ADA RAMPS IN NEW

 BETHLEHAMAlong SR 28 (Broad Street) though New Bethleham, the ADA ramps were check to verify that they meet the standards for grade and width. All ramps at the following cross streets were checked:

- Liberty Street
- Maple Street
- LaFayette Street
- Wood Street
- Vine Street

The ADA ramps for two crossing were also checked near the following businesses:

- Klingensmith's Drug Store
- United States Post Office

All ramps met standards and were in good condition.

ADA Ramp crossing the entrance from Klingensmith's Drug Store

REDBANK VALLEY TRAIL CROSSING

After travelling through New Bethlehem and its commercial district, the Redbank Valley Trail crosses SR 28. The trail crossing is skewed to SR 28, which is an S-bend on either side of the crossing. The sight distance is minimal from both the roadway and the trail. Approaching the trail crossing along SR 28 , there are several signs warning of the crossing and an advisory speed reduction sign for 25 mph through the curves. To the north of the crossing, there is an uphill grade (see image).. South of the crossing, the roadway is relatively flat but is lower in elevation than the trail (see image). Brush and trees separate the trail and roadway along the slopes. Visibility is poor from the trail and from the roadway. To cross SR 28, a trail user must travel about 30 feet. There are no warning lights for the trail crossing. The sight distance for pedestrians and vehicles approaching the crossing is only a few hundred feet. Vehicles were difficult to see from the detectable warning surface on the trail due to the slopes along the roadway. Vehicles were observed to be speeding through the S-bend even though it is a 25 mph advisory speed curve.

Redbank Valley Trail Crossing, facing south on SR 28

Redbank Valley Trail Crossing, facing north on SR 28

Approaching Redbank Valley Trail Crossing, southbound on SR 28 (Image from Google Street View)

ADA Ramps in Hawthron

In Hawthron, there are three ADA ramps along SR 28 at the cross roads of Center Street and Arch Street. They were measured for grade and width and found to be within standards. At Arch Street, there is only one

ADA ramp. There is no ADA at the corner where Alcorn Funeral Home is located.

ADA Ramp
across
from Alcorn
Funeral
Home at
Arch Street

SR 0536, TR 0506, AND SR 28

Traveling north from the trail crossing to SR 0536, guide rail, is in good condition or appears to have recently been replaced. The speed limit increases from 45 mph to 55 mph north of Hawthorn.

At the intersection of SR 0536, there is deteriorating pavement in several locations. Most of this pavement is on SR 0536 and on the curve returns of the intersection. The intersection with SR 0536 is skewed and northbound traffic from SR 28 has to make a sharp turn to travel east on SR 0536. There is evidence of overtracking at this corner. In addition, at this corner, the slope is beginning to deteriorate. This could be due to natural erosion but there were tracks on the grass, which suggest a trailer was brought up on the hill and taken off the hill at the corner.

From SR 0536, facing south on SR 28
Across from SR 0536 is TR 0506, a gravel road leading to several residential properties. Near the intersection, there is a weight limit sign for the bridge, which is farther down the road.

Near the AdDress Of 5934 SR 28

Just north of the intersection of SR 0536 and SR 28, there is an impact attenuator on the southbound side, which was recently damaged. The impact attenuator was crushed and debris remains from the accident. About 25 feet of guide rail was curled over itself and snapped from the wooden posts due to the impact attenuator (see image). There is a 55 mph speed limit along this stretch of road. Sight distance for vehicles traveling southbound is good due to the open fields and relatively flat terrain.

Used impact attenuator on southbound side of SR 28

TOADTOWN ROAD, ANDERSON Road, Creek Street, and SR 28

Traveling from 5934 SR 28 to Toadtown Road, the roadway was in good condition. The guide rail was in fair condition with some erosion evident along the shoulder. There were several locations where the slope was reinforced with gabions along the southbound lanes.

At the intersection of Toadtown Road, two other minor roads that create a 5-way intersection. Anderson Road and Creek Street intersect SR 28 and are parallel with each other. Toadtown Road and Creek Street lead to residential areas immediately while Anderson Road turns away from Creek Street to a residential area along the Redbank Creek.

The speed limit along the minor roads are 15 to 25 mph while SR 28 has a speed limit of 55 mph . The pavement on the minor roads are deteriorating and have potholes. The guide rail along SR 28 is in good condition but the radius to Toadtown road is in poor condition (see image).

Sight distance at this location is fair. The terrain is mostly flat to the north, east, and west. To the south, there is downhill approaching the intersection. While the stop signs are a short distance from the intersection on the minor roads, vehicles were observed to move closer to SR 28 to see better around the brush and utility poles if traveling north or crossing SR 28 (see image). To travel south or cross the road, there are no obstructions in the sight line.

Facing east at SR 28 on Toadtown Road

Facing south on Toadtown Road

SR 322 AND SR 28

Traveling north from Summerville, the roadway varies in condition. Most of the roadway is in good condition but there is evidence of a small slide and cliff overhangs on the southbound side of SR 28 . Several smaller intersections are skewed along SR 28. These could potentially have insufficient sight distance. The speed limit changes several times from 55 mph to 45 mph to 35 mph as vehicles approach Brookville. Several S-bends have a 40 mph advisory speed.

The intersection of SR 322 and SR 28 is a signalized intersection with channelized right turn lanes on all four corners. The pavement at the intersection is in good condition as is the concrete used for the islands in the intersection. The last 135 feet of guide rail on
the southeast corner is heavily damaged on the radius (see image). The 100 feet of the guide rail appears to have been pulled from the posts and dragged into the parking lot just past the corner. There is 25 feet of guide rail that is damaged, but still connected to the posts.

Along the guide rail radius, there is heavy erosion which has damaged the edge of pavement and leads down the slope behind the guide rail (see image).

Damaged guide rail on SR 322/SR 28

Heavy erosion under guide rail on northbound channelized right turn

APPENDIX G

 Intersection Level of Service 2019 AM/PM and 2045 AM/PMExhibit 1 - Intersection Level of Service (2019 AM)

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	$\begin{aligned} & \text { Intersection } \\ & \text { LOS } \end{aligned}$
1	SR 28 at SR 85 (Signalized)	SR 85	EB	EBL	67.3	E	51.7	D	38.3	D
				EBT/R	40.9	D				
		SR 85	WB	WBL	47.8	D	41.4	D		
				WBT/R	26.3	C				
		SR 28	NB	NBL	319.2	F	29.7	C		
				NBT	18.8	B				
				NBR	0	A				
		SR 28	SB	SBL	129.6	F	37.5	D		
				SBT/R	28.7	C				
2	SR 28 at SR 1004 Madison Rd	SR 1004	EB	EBLIR	12.6	B	12.6	B	3	A
		SR 28	NB	NBL/T	9.3(L)	A	0.5	A		
		SR 28	SB	SBT/R	0	A	0	A		
21	Kohlersburg Rd at SR 1004 Madison Rd	SR 1004	EB	EBLIT/R	6.8	A	6.8	A	7.1	A
		Slip Ramp	WB	WBL/T/R	7.4	A	7.4	A		
		SR 1004	NB	NBL/T/R	7.9	A	7.9	A		
		Kburg Rd	SB	SBL/T/R	7.3	A	7.3	A		
3	SR 28 at Kohlersburg Rd	Kburg Rd	EB	EBL/R	13.4	B	13.4	B	0.2	A
		SR 28	NB	NBL/T	8.7(L)	A	0	A		
		SR 28	SB	SBT/R	0	A	0	A		
4	SR 28 at SR 839	SR 28	EB	EBL/T/R	8.9(L)	A	0.1	A	2.1	A
		SR 28	WB	WBL	9.4	A	1.2	A		
				WBT/R	0	A				
		SR 839	NB	NBL/T/R	11	B	11	B		
		Short St	SB	SBLIT/R	24.9	C	24.9	C		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
5	SR 28 at SR 66 (Signalized)	SR 28	EB	EBL	9	A	8.1	A	14.6	B
				EBT/R	7.7	A				
		SR 28	WB	WBLIT/R	19.1	B	19.1	B		
		Wood St	NB	NBL/T/R	13.5	B	13.5	B		
		SR 66	SB	SBLIT/R	19.1	B	19.1	B		
7	SR 28 at Center St	SR 28	EB	EBL/T/R	9.5 (L)	A	0.3	A	1.2	A
		SR 28	WB	WBLIT/R	9.6(L)	A	0.2	A		
		Walker Flat Rd	NB	NBL/T/R	13.3	B	13.3	B		
		Center St	SB	SBLIT/R	12.1	B	12.1	B		
8	SR 28 at Mayport Rd SR 536	SR 28	EB	EBL/T/R	9(L)	A	0.2	A	2.6	A
		SR 28	WB	WBLIT/R	9.3(L)	A	0.6	A		
		Mayport Rd	NB	NBL/T/R	11.1	B	11.1	B		
		Driveway	SB	SBL/T/R	12	B	12	B		
9	SR 28 at Carrier St	SR 28	EB	EBL/T/R	8.8(L)	A	0.3	A	2.3	A
		SR 28	WB	WBLIT/R	9.1(L)	A	1.3	A		
		Carrier St	NB	NBL/T/R	9.8	A	9.8	A		
		Carrier St	SB	SBL/T/R	10.5	B	10.5	B		
10	SR 28 at S Main St	Driveway	EB	EBL/T/R	10.8	B	10.8	B	2.3	A
		S. Main St	WB	WBLIT/R	10	B	10	B		
		SR 28	NB	NBL/T/R	8.2(L)	A	0	A		
		SR 28	SB	SBL/T/R	8.7(L)	A	2.7	A		
11	SR 28 at SR 322 (Signalized)	SR 322	EB	EBL/T/R	16.6	B	16.6	B	12.9	B
		SR 322	WB	WBL/T/R	14.9	B	14.9	B		
		SR 28	NB	NBL	10.7	B	13.6	B		
				NBT/R	14	B				
		SR 36	SB	SBL	9.4	A	9.7	A		
				SBT	10.2	B				

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	$\begin{aligned} & \text { Movement } \\ & \text { LOS } \end{aligned}$	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
				SBR	0	A				
12	SR 36 at I-80 EB Ramps (Signalized)	I-80 Ramps	EB	EBL/T	31.1	C	33	C	11.1	B
				EBR	34.5	C				
		SR 36	NB	NBT/R	7	A	6.8	A		
		SR 36	SB	SBL	4	A	7.1	A		
				SBT	8.4	A				
13	SR 36 at I-80 WB Ramps (Signalized)	1-80 Ramps	WB	WBLIT	30.2	C	32.2	C	10.5	B
				WBR	34.4	C				
		SR 36	NB	NBL	3.7	A	0.9	A		
				NBT	0.1	A				
		SR 36	SB	SBT/R	7.6	A	7.5	A		
14	SR 28 at Waterford Pike	SR 28	EB	EBL/T	9(L)	A	0.1	A	0.1	A
		SR 28	WB	WBT/R	0	A	0	A		
		Waterford Pike	SB	SBL/R	9.8	A	9.8	A		
15	SR 28 at I-80 EB Ramps	1-80 Ramps	EB	EBL/T/R	10.1	B	10.1	B	3.6	A
		SR 28	NB	NBT/R	0	A	0	A		
		SR 28	SB	SBL/T	8.3(L)	A	0.2	A		
16	SR 28 at I-80 WB Ramps	1-80 Ramps	WB	WBLIT/R	9.8	A	9.8	A	2.8	A
		SR 28	NB	NBL/T	8.3(L)	A	1.7	A		
		SR 28	SB	SBT/R	0	A	0	A		
81	SR 28 at Dairy Rd	SR 28	EB	EBT/R	0	A	0	A	0.2	A
		SR 28	WB	WBL/T	9.2(L)	A	0.1	A		
		Dairy Rd	NB	NBL/R	10.6	B	10.6	B		

Exhibit 2 - Intersection Level of Service (2019 PM)

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
1	SR 28 at SR 85 (Signalized)	SR 85	EB	EBL	51.7	D	47.7	D	34.9	C
				EBT/R	44.3	D				
		SR 85	WB	WBL	50.5	D	45	D		
				WBT/R	29.2	C				
		SR 28	NB	NBL	108.3	F	26.8	C		
				NBT	24.1	C				
				NBR	0	A				
		SR 28	SB	SBL	117.2	F	29.2	C		
				SBT/R	23.3	C				
2	SR 28 at SR 1004 Madison Rd	SR 1004	EB	EBL/R	13.3	B	13.3	B	2	A
		SR 28	NB	NBL/T	9.2(L)	A	0.7	A		
		SR 28	SB	SBT/R	0	A	0	A		
21	Kohlersburg Rd at SR 1004 Madison Rd	SR 1004	EB	EBLIT/R	7.3	A	7.3	A	7.5	A
		Slip Ramp	WB	WBL/T/R	7.6	A	7.6	A		
		SR 1004	NB	NBL/T/R	7.8	A	7.8	A		
		Kburg Rd	SB	SBL/T/R	7.3	A	7.3	A		
3	SR 28 at Kohlersburg Rd	Kburg Rd	EB	EBL/R	14.6	B	14.6	B	0.2	A
		SR 28	NB	NBL/T	8.9(L)	A	0	A		
		SR 28	SB	SBT/R	0	A	0	A		
4	SR 28 at SR 839	SR 28	EB	EBL/T/R	9.1(L)	A	0	A	1.8	A
		SR 28	WB	WBL	9.5	A	1.9	A		
				WBT/R	0	A				
		SR 839	NB	NBL/T/R	10.6	B	10.6	B		
		Short St	SB	SBL/T/R	24.8	C	24.8	C		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
	SR 28 at SR 66 (Signalized)	SR 28	EB	EBL	9.4	A	8.6	A	15.6	B
				EBT/R	8.3	A				
		SR 28	WB	WBLIT/R	19.3	B	19.3	B		
		Wood St	NB	NBLIT/R	13.5	B	13.5	B		
		SR 66	SB	SBLIT/R	19.7	B	19.7	B		
7	SR 28 at Center St	SR 28	EB	EBLIT/R	9.7(L)	A	0.5	A	1.4	A
		SR 28	WB	WBL/T/R	9.5(L)	A	0.4	A		
		Walker Flat Rd	NB	NBL/T/R	15.3	C	15.3	C		
		Center St	SB	SBL/T/R	12.5	B	12.5	B		
8	SR 28 at Mayport Rd SR	SR 28	EB	EBLIT/R	9.2(L)	A	0.1	A	3.3	A
		SR 28	WB	WBL/T/R	9.4(L)	A	1.4	A		
		Mayport Rd	NB	NBLTT/R	13.1	B	13.1	B		
		Driveway	SB	SBLIT/R	14	B	14	B		
9	SR 28 at Carrier St	SR 28	EB	EBLIT/R	9.3(L)	A	0.1	A	2.4	A
		SR 28	WB	WBL/T/R	9.1(L)	A	1.4	A		
		Carrier St	NB	NBLIT/R	11.4	B	11.4	B		
		Carrier St	SB	SBL/T/R	12.1	B	12.1	B		
10	SR 28 at S Main St	Driveway	EB	EBL/T/R	11.2	B	11.2	B	4	A
		S. Main St	WB	WBLIT/R	12.4	B	12.4	B		
		SR 28	NB	NBLIT/R	8.6(L)	A	0.1	A		
		SR 28	SB	SBL/T/R	8.6(L)	A	0.8	A		
11	SR 28 at SR 322 (Signalized)	SR 322	EB	EBLIT/R	18.5	B	18.5	B	14.1	B
		SR 322	WB	WBL/T/R	16.4	B	16.4	B		
				NBL	12.4	B	15.4			
		SR 28	NB	NBT/R	16	B		B		
		SR 36	SB	SBL	9.3	A	10	A		
				SBT	11.1	B				
				SBR	0	A				

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
12	SR 36 at I-80 EB Ramps (Signalized)	I-80 Ramps	EB	EBL/T	29.5	C	33.9	C	13.2	B
				EBR	36.8	D				
		SR 36	NB	NBT/R	8.7	A	8.5	A		
		SR 36	SB	SBL	5.1	A	8.2	A		
				SBT	9.4	A				
13	SR 36 at I-80 WB Ramps (Signalized)	I-80 Ramps	WB	WBL/T	174	F	97.1	F	29.7	C
				WBR	32.7	C				
		SR 36	NB	NBL	5.7	A	1.5	A		
				NBT	0.2	A				
		SR 36	SB	SBT/R	10.9	B	10.8	B		
14	SR 28 at Waterford Pike	SR 28	EB	EBLIT	9.6(L)	A	0.2	A	0.2	A
		SR 28	WB	WBT/R	0	A	0	A		
		Waterford Pike	SB	SBL/R	13.4	B	13.4	B		
15	SR 28 at I-80 EB Ramps	I-80 Ramps	EB	EBL/T/R	10.1	B	10.1	B	2.4	A
		SR 28	NB	NBT/R	0	A	0	A		
		SR 28	SB	SBLIT	8.7(L)	A	0.5	A		
16	SR 28 at I-80 WB Ramps	1-80 Ramps	WB	WBL/T/R	12.6	B	12.6	B	3.3	A
		SR 28	NB	NBL/T	8.6(L)	A	3.1	A		
		SR 28	SB	SBT/R	0	A	0	A		
81	SR 28 at Dairy Rd	SR 28	EB	EBT/R	0	A	0	A	0.1	A
		SR 28	WB	WBL/T	9.2(L)	A	0	A		
		Dairy Rd	NB	NBL/R	11.1	B	11.1	B		

Exhibit 3 - Intersection Level of Service (2045 AM)

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
1	SR 28 at SR 85 (Signalized)	SR 85	EB	EBL	75.2	E	60.0	E	43.3	D
				EBT/R	49.7	D				
		SR 85	WB	WBL	60.2	E	50.8	D		
				WBT/R	28.6	C				
		SR 28	NB	NBL	158.7	F	25.6	C		
				NBT	20.0	C				
				NBR	0.0	A				
		SR 28	SB	SBL	149.1	F	43.0	D		
				SBT/R	33.0	C				
2	SR 28 at SR 1004 Madison Rd	SR 1004	EB	EBL/R	13.8	B	13.8	B	3.2	A
		SR 28	NB	NBL/T	9.5(L)	A	0.5	A		
		SR 28	SB	SBT/R	0.0	A	0.0	A		
21	Kohlersburg Rd at SR 1004 Madison Rd	SR 1004	EB	EBL/T/R	6.9	A	6.9	A	7.2	A
		Slip Ramp	WB	WBL/T/R	7.5	A	7.5	A		
		SR 1004	NB	NBL/T/R	7.9	A	7.9	A		
		Kburg Rd	SB	SBL/T/R	7.4	A	7.4	A		
3	SR 28 at Kohlersburg Rd	Kburg Rd	EB	EBL/R	14.7	B	14.7	B	0.2	A
		SR 28	NB	NBL/T	8.8(L)	A	0.0	A		
		SR 28	SB	SBT/R	0.0	A	0.0	A		
4	SR 28 at SR 839	SR 28	EB	EBL/T/R	9.0(L)	A	0.1	A	2.2	A
		SR 28	WB	WBL	9.6	A	1.2	A		
				WBT/R	0.0	A				
		SR 839	NB	NBL/T/R	11.7	B	11.7	B		
		Short St	SB	SBL/T/R	31.5	D	31.5	D		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
5	SR 28 at SR 66 (Signalized)	SR 28	EB	EBL	10.4	B	9.5	A	17.2	B
				EBT/R	9.0	A				
		SR 28	WB	WBL/T/R	22.8	C	22.8	C		
		Wood St	NB	NBLIT/R	15.1	B	15.1	B		
		SR 66	SB	SBLIT/R	22.5	C	22.5	C		
7	SR 28 at Center St	SR 28	EB	EBL/T/R	9.7(L)	A	0.3	A	1.3	A
		SR 28	WB	WBLIT/R	9.8(L)	A	0.2	A		
		Walker Flat Rd	NB	NBL/T/R	14.6	B	14.6	B		
		Center St	SB	SBLIT/R	12.9	B	12.9	B		
8	SR 28 at Mayport Rd SR536	SR 28	EB	EBL/T/R	9.1(L)	A	0.2	A	2.7	A
		SR 28	WB	WBLIT/R	9.4(L)	A	0.6	A		
		Mayport Rd	NB	NBL/T/R	11.8	B	11.8	B		
		Driveway	SB	SBLIT/R	12.7	B	12.7	B		
9	SR 28 at Carrier St	SR 28	EB	EBLIT/R	8.8(L)	A	0.3	A	2.4	A
		SR 28	WB	WBL/T/R	9.2(L)	A	1.4	A		
		Carrier St	NB	NBL/T/R	10.1	B	10.1	B		
		Carrier St	SB	SBLIT/R	10.7	B	10.7	B		
10	SR 28 at S Main St	Driveway	EB	EBL/T/R	11.2	B	11.2	B	2.4	A
		S. Main St	WB	WBLIT/R	10.4	B	10.4	B		
		SR 28	NB	NBL/T/R	8.3(L)	A	0.0	A		
		SR 28	SB	SBLIT/R	8.8(L)	A	2.8	A		
11	SR 28 at SR 322(Signalized)	SR 322	EB	EBLIT/R	17.5	B	17.5	B	13.4	B
		SR 322	WB	WBL/T/R	15.4	B	15.4	B		
				NBL	10.9	B	14.4			
		SR 28	NB	NBT/R	14.8	B		B		
		SR 36	SB	SBL	9.4	A	9.7	A		
				SBT	10.4	B				
				SBR	0.0	A				

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
12	SR 36 at I-80 EB Ramps (Signalized)	1-80 Ramps	EB	EBL/T	30.7	C	33.5	C	11.8	B
				EBR	35.7	D				
		SR 36	NB	NBT/R	7.8	A	7.7	A		
		SR 36	SB	SBL	4.5	A	7.6	A		
				SBT	8.9	A				
13	SR 36 at I-80 WB Ramps (Signalized)	I-80 Ramps	WB	WBLIT	29.7	C	32.0	C	10.9	B
				WBR	34.6	C				
		SR 36	NB	NBL	4.1	A	1.0	A		
				NBT	0.2	A				
		SR 36	SB	SBT/R	8.4	A	8.3	A		
14	SR 28 at Waterford Pike	SR 28	EB	EBLIT	9.2(L)	A	0.1	A	0.1	A
		SR 28	WB	WBT/R	0.0	A	0.0	A		
		Waterford Pike	SB	SBL/R	10.1	B	10.1	B		
15	SR 28 at I-80 EB Ramps	I-80 Ramps	EB	EBL/T/R	10.5	B	10.5	B	3.7	A
		SR 28	NB	NBT/R	0.0	A	0.0	A		
		SR 28	SB	SBLIT	8.3(L)	A	0.2	A		
16	SR 28 at I-80 WB Ramps	1-80 Ramps	WB	WBL/T/R	10.2	B	10.2	B	2.8	A
		SR 28	NB	NBL/T	8.4(L)	A	1.7	A		
		SR 28	SB	SBT/R	0.0	A	0.0	A		
81	SR 28 at Dairy Rd	SR 28	EB	EBT/R	0.0	A	0.0	A	0.2	A
		SR 28	WB	WBL/T	9.3(L)	A	0.1	A		
		Dairy Rd	NB	NBL/R	11.1	B	11.1	B		

Exhibit 4 - Intersection Level of Service (2045 PM)

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	$\begin{aligned} & \text { Approach } \\ & \text { LOS } \end{aligned}$	Intersection Delay (s)	Intersection LOS
1	SR 28 at SR 85 (Signalized)	SR 85	EB	EBL	54	D	51.8	D	39.8	D
				EBT/R	49.8	D				
		SR 85	WB	WBL	64.3	E	56	E		
				WBT/R	32.1	C				
		SR 28	NB	NBL	97.5	F	30.1	C		
				NBT	27.9	C				
				NBR	0	A				
		SR 28	SB	SBL	113.8	F	31.5	C		
				SBT/R	26	C				
2	SR 28 at SR 1004Madison Rd	SR 1004	EB	EBLIR	14.7	B	14.7	B	2.2	A
		SR 28	NB	NBL/T	9.3(L)	A	0.7	A		
		SR 28	SB	SBT/R	0	A	0	A		
21	Kohlersburg Rd at SR 1004 Madison Rd	SR 1004	EB	EBL/T/R	7.4	A	7.4	A	7.7	A
		Slip Ramp	WB	WBL/T/R	7.8	A	7.8	A		
		SR 1004	NB	NBL/T/R	7.9	A	7.9	A		
		Kburg Rd	SB	SBLIT/R	7.4	A	7.4	A		
3	SR 28 at Kohlersburg Rd	Kburg Rd	EB	EBLIR	16.4	C	16.4	C	0.2	A
		SR 28	NB	NBL/T	9.1(L)	A	0	A		
		SR 28	SB	SBT/R	0	A	0	A		
4	SR 28 at SR 839	SR 28	EB	EBL/T/R	9.2(L)	A	0	A	1.9	A
		SR 28	WB	WBL	9.8	A	1.9	A		
				WBT/R	0	A				
		SR 839	NB	NBLIT/R	11.1	B	11.1	B		
		Short St	SB	SBLIT/R	30.9	D	30.9	D		
5	SR 28 at SR 66 (Signalized)	SR 28	EB	EBL	10.7	B	10	B	19.2	B
				EBT/R	9.7	A				
		SR 28	WB	WBL/T/R	24.7	C	24.7	C		
		Wood St	NB	NBLIT/R	15	B	15	B		
		SR 66	SB	SBLIT/R	23.7	C	23.7	C		

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
7	SR 28 at Center St	SR 28	EB	EBL/T/R	9.9(L)	A	0.5	A	1.5	A
		SR 28	WB	WBL/T/R	9.7(L)	A	0.4	A		
		Walker Flat Rd	NB	NBL/T/R	17.5	C	17.5	C		
		Center St	SB	SBL/T/R	13.6	B	13.6	B		
8	SR 28 at Mayport Rd SR	SR 28	EB	EBLIT/R	9.3(L)	A	0.1	A	3.5	A
		SR 28	WB	WBL/T/R	9.6(L)	A	1.4	A		
		Mayport Rd	NB	NBLIT/R	14.5	B	14.5	B		
		Driveway	SB	SBL/T/R	15.5	C	15.5	C		
9	SR 28 at Carrier St	SR 28	EB	EBL/T/R	9.5(L)	A	0.2	A	2.6	A
		SR 28	WB	WBL/T/R	9.2(L)	A	1.4	A		
		Carrier St	NB	NBL/T/R	12	B	12	B		
		Carrier St	SB	SBL/T/R	12.9	B	12.9	B		
10	SR 28 at S Main St	Driveway	EB	EBLIT/R	11.8	B	11.8	B	4.3	A
		S. Main St	WB	WBL/T/R	13.7	B	13.7	B		
		SR 28	NB	NBLIT/R	8.6(L)	A	0.1	A		
		SR 28	SB	SBLIT/R	8.6(L)	A	0.8	A		
11	$\begin{aligned} & \text { SR } 28 \text { at SR } 322 \\ & \text { (Signalized) } \end{aligned}$	SR 322	EB	EBL/T/R	19.3	B	19.3	B	15.0	B
		SR 322	WB	WBL/T/R	16.8	B	16.8	B		
				NBL	13.6	B	17.2			
		SR 28	NB	NBT/R	17.9	B		B		
		SR 36	SB	SBL	10.2	B	10.9	B		
				SBT	11.9	B				
				SBR	0	A				
12	SR 36 at I-80 EB Ramps (Signalized)	I-80 Ramps	EB	EBLIT	29	C	35.2	D	14.2	B
				EBR	39.3	D				
		SR 36	NB	NBT/R	9.9	A	9.8	A		
		SR 36	SB	SBL	5.9	A	8.9	A		
				SBT	10.1	B				

ID	Intersection	Roadway	Approach	Lane Config	Movement Delay (s)	Movement LOS	Approach Delay (s)	Approach LOS	Intersection Delay (s)	Intersection LOS
13	SR 36 at I-80 WB Ramps (Signalized)	I-80 Ramps	WB	WBL/T	232.9	F	127.4	F	37.7	D
				WBR	38.9	D				
		SR 36	NB	NBL	5.9	A	1.6	A		
				NBT	0.2	A				
		SR 36	SB	SBT/R	11.5	B	11.3	B		
14	SR 28 at Waterford Pike	SR 28	EB	EBL/T	9.9(L)	A	0.3	A	0.2	A
		SR 28	WB	WBT/R	0	A	0	A		
		Waterford Pike	SB	SBL/R	14.8	B	14.8	B		
15	SR 28 at I-80 EB Ramps	I-80 Ramps	EB	EBL/T/R	10.6	B	10.6	B	2.5	A
		SR 28	NB	NBT/R	0	A	0	A		
		SR 28	SB	SBL/T	8.8(L)	A	0.6	A		
16	SR 28 at I-80 WB Ramps	I-80 Ramps	WB	WBL/T/R	13.8	B	13.8	B	3.5	A
		SR 28	NB	NBL/T	8.7(L)	A	3.2	A		
		SR 28	SB	SBT/R	0	A	0	A		
81	SR 28 at Dairy Rd	SR 28	EB	EBT/R	0	A	0	A	0.1	A
		SR 28	WB	WBL/T	9.3(L)	A	0	A		
		Dairy Rd	NB	NBL/R	11.7	B	11.7	B		

APPENDIX H Design Criteria

25 MPH DESIGN CRITERIA

BY: NVA	DATE: $\quad 3 / 18 / 2020$
CHK'D BY: JDW	DATE: 4/1/2020

DESIGN CRITERIA MATRIX
MPMS NO. \qquad N/A N/A, Clarion \qquad COUNTY

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to I-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N)
N

DESIGN DESIGNATION

RT 28

DESIGN CRITERIA Reconstruction
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Suburban Center
TOPOGRAPHY Rolling
REMARKS New Bethlehem
(4) tRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 8896 (2017)
DESIGN YEAR ADT (Average Daily Traffic) 10229
DESIGN YEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 818
D (Directional Distribution) 55
T (Truck Percentage) 5 \qquad
\longrightarrow
SR 28 SEC N/A Clarion_COUNTY

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED VALUE	PROPOSED VALUE	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			25 MPH	30-35 MPH	25 MPH	No	DM-2, Table 1.3	
Lane Width			11'	10' to 12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			8'	4'-6'	8'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			44'	28'-36'	44'	Yes	DM-2, Sec. 1.2C	
Minimum Horizontal Radius			600'	231' to 340'	600'	No	AASHTO, Table 3-9	* 25 mph , minimum radius is $144{ }^{\prime}$
Maximum Superelevation Rate			Varies	6.0\%	6.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		0.10\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 103
	Maximum		2.90\%	6.00\%	6.00\%	Yes	AASHTO, Table 7-2	line segment 90
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	200'-250'	200'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	335' to 390'	280'	No	AASHTO, Table 9-6	* 25 mph , minimum ISD is 280^{\prime}
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2. Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	N/A	N/A	DM-2, Table 2.2	

*Refer to Publication 10X, Design Manual 1X, Appendix P for more information on controlling criteria and design exceptions.
6 Any pedestrian and bicycle concerns/needs? Explain. Sidewalks, multimodal
Any ADA compliance issues? Explain. ADA ramps on corners through town
Any transit issues? Explain. \qquad
\qquad
Any additional design issues? Explain \qquad

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-9. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=6 \%$

	$\begin{aligned} & V_{a}=20 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=30 \\ & k m / h \end{aligned}$	$\begin{aligned} & V_{o j}=40 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=60 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=70 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{o}=80 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=90 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{gathered} V_{d t}=100 \\ k m / h \end{gathered}$	$\begin{aligned} & V_{\sigma}=310 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=120 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=130 \\ & k \mathrm{~m} / \mathrm{h} \end{aligned}$
$e(\%)$	$R(m)$	$R(\mathrm{~m})$	R (m)	$R(\mathrm{~m})$	B (m)	$8(m)$	$n(m)$	$8(\mathrm{~m})$	$R(\mathrm{~m})$	8 (m)	$R(\mathrm{~m})$	$R(m)$
NKC	194	421	738	1050	1440	1910	2366	2880	3510	4060	4770	5249
RC	138	299	525	750	1030	1380	1710	2090	2560	2970	3310	3880
2.2	122	265	465	668	919	1230	1530	1880	2300	2670	3160	3500
2.4	109	236	415	599	825	1110	2380	1700	2080	2420	2870	3190
2.6	97	212	3.12	540	746	1000	1260	1540	1890	2210	2630	2930
2.8	87	120	334	488	676	910	1150	1410	1730	2020	2420	27.06)
3.0	78	. 176	300	443	615	831	1050	1290	1590	1870	2240	2510
3.2	71	152	26.5	402	561	762	959	1190	1470	1730	2080	2330
3.4	61	133	239	364	511	697	88.	1100	1360	1600	1940	2180
3.6	51	123	206	329	465	640	813	1020	1260	1490	1810	2050
3.8	42	96	177	294	422	585	749	939	1170	1390	1700	1930
4.0	36	82.	155	261	380	535	690	870	1090	1300	1590	1820
4.2	31	72	136	234	343	488	635	806	1010	1220	1500	1720
4.4	27	63	121	210	311	446	584	746	938	1140	1410	1630
4.6	24	56	108	190	283	408	538	692	873	1070	1330	1540
4.8	21	50	97	172	258	374	496	641	812	997	1260	1.470
5.0	19	45	88	155	23.5	343	457	394	755	933	2190	1400
5.2	17	40	79	142	214	31.5	421	549	701	871	1120	1330
5.4	15	36	1	128	195	287	386	506	648	810	1060	1260
5.6	13	32	63	115	176	260	351	463	594	747	980	1190
5.8	11	2.8	56	102	156	232	315	$4 \mathrm{th}^{6}$	537	679	9017	1110
6.0	8	21	43	79	123	184	252	336	437	360	756	951

Whan														
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{\mathrm{D}}=20 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & y_{\mathrm{tf}^{*} \neq 25}^{\mathrm{mph}} \end{aligned}$	$\begin{gathered} V_{d}=30 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{j}=35 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} V_{t d}=4 i \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{a}=45 \\ \text { mph } \end{gathered}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{mph} \end{aligned}$	$\begin{aligned} & V_{d}=55 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{j}=60 \\ m p h \end{gathered}$	$\begin{gathered} V_{d}=65 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & v_{d}=70 \\ & \text { mph } \end{aligned}$	$\begin{gathered} v_{d t}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \text { mph } \end{gathered}$
e (\%)	R (ft)	$R(f t)$	8 (ta)	$R(f t)$	R $\{4$ t $\}$	R (ft)	$R(f t)$	$\mathrm{R}(\mathrm{t}$)	$R(\mathrm{ft})$	R $\{\mathrm{ft}$)	R (ft)	R(侄)	$R(\mathrm{ft})$	$\mathrm{R}(\mathrm{ft})$
NC	868	1580	2290	3130	4100	5230	6480	7870	9410	11100	12500	14100	15700	17400
R\%,	614	1120	1630	2240	2950	3770	4680	5700	6820	8060	9130	10300	11580	12900
2.2	543	991	1450	2000	2630	3378	4190	5100	6110	7230	B200	9240	10400	11600
2.4	482	884	1300	1790	2360	3030	3770	4600	5520	6540	7430	8380	9420	10600
2.6	430	791	1170	16.10	2130	2740	3920	4170	5020	5950	6770	7660	8620	9671
2.8	384	729	1.050	1460	1930	2490	3110	3800	4580	5440	6200	7030	7930	8910
3.0	341	635	944	1320	1760	2270	2840	3480	4200	4990	5710	6490	7330	8260
3.2	300	566	850	1200	1600	2080	2600	32.50	3860	4600	5280	6010	6810	7680
3.4	256	498	761	1080	1460	1900	2390	2940	3560.	4250	4890	5580	6340	7180
3.6	209	922	613	372	1320	1740	2190	2710	3290	3940	4540	52.10	5930	6720
3.8	176	358	583	864	1190	1590	2010	2490	3040	3650	4230	4860	5560	6320
4.0	151	309	511	766	1070	1440	1840	2300	2810	3390	3950	4550	5220	5950
4.2	131	270	452	584	960	1310	1680	2110	2590	3140	3680	4270	4910	5620
4.4	116	238	402	615	868	1190	1540	1940	2400	2920	3440	4010	4630	5320
4.6	102	212	360	555	788	1090	1410	1.780	2210	2710.	3220	3770	4380	5040
4.8	91	189	324	502	718	995	1300	1640	2050	2.510	3000	3550	4149	4790
5.0	82	169	292	456	654	911	1190	1510	1890	2330	2800	3330	3910	4550
5.2	73	152	264	413	595	833	1090	1390	1750	2160	2610	3120	3690	4320.
5.4	65	136	237	373	340	759	99.5	1280	1610	1990	2429	2910	3460	4090
3.6	58	121	212	335	487	687	903	1160	1470	1830	2230	2700	3230	3840
5.8	51	106	186	296	431	611	88	1040	1320	1650	2020	2460	2970	3560
6.0	39	8.1	144	231	340	485	643	833	1060	1330	1660	2040	2500	3050

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain					ifte							S.	sto	ar			
	Maximum Grade (\%) for Specified Design Speed (km/h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	80	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rofling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detalled discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft$]$ of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximmm grades for rural arterials. When vertical curves for stopping sight dis-
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becatse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sigh distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Merric				U.S. Customary			
Design	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
Speed (km / h)		Calculated (m)	Design (m)			Calculated (t)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn feft onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

35 MPH DESIGN CRITERIA

BY: NVA	DATE: $\frac{3 / 18 / 2020}{1 / 2020}$
CHK'D BY: JDW	

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to I-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N)
N

DESIGN DESIGNATION

RT 28
DESIGN CRITERIA Reconstruction
(4) TRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 8996 (2017)
DESIGN YEAR ADT (Average Daily Traffic) 10344
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Suburban Center
DEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 828
TOPOGRAPHY Rolling
REMARKS South Bethlehem, Hawthorn,
Summerville

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED VALUE	PROPOSED VALUE	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			35 MPH	30-35 MPH	35 MPH	Yes	DM-2, Table 1.3	
Lane Width			11'	10'-12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			2'-8'	4'-6'	6'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			44^{\prime}	28'-36'	44'	Yes	DM-2, Table 1.2G	
Minimum Horizontal Radius			75'	231' to 340'	$340 '$	Yes	AASHTO, Table 3-9	
Maximum Superelevation Rate			Varies	6.0\%	6.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		0.40\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 110
	Maximum		1.90\%	6.00\%	6.00\%	Yes	AASHTO, Table 7-2	line segment 117
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	200' to 250'	250'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	$335{ }^{\prime}$ to 390'	390'	Yes	AASHTO, Table 9-6	
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2, Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	N/A	Yes	DM-2, Table 2.2	

*Refer to Publication 10X, Design Manual 1X, Appendix P for more information on controlling criteria and design exceptions.
6 Any pedestrian and bicycle concerns/needs? Explain. Sidewalks, multimodal
Any ADA compliance issues? Explain. ADA ramps on corners through town
Any transit issues? Explain
Any additional design issues? Explain. 15 mph curve entering New Bethleham

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-9. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=6 \%$

	$\begin{aligned} & V_{a}=20 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=30 \\ & k m / h \end{aligned}$	$\begin{aligned} & V_{o j}=40 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=60 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=70 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{o}=80 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=90 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{gathered} V_{d t}=100 \\ k m / h \end{gathered}$	$\begin{aligned} & V_{\sigma}=310 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=120 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=130 \\ & k \mathrm{~m} / \mathrm{h} \end{aligned}$
$e(\%)$	$R(m)$	$R(\mathrm{~m})$	R (m)	$R(\mathrm{~m})$	B (m)	$8(m)$	$n(m)$	$8(\mathrm{~m})$	$R(\mathrm{~m})$	8 (m)	$R(\mathrm{~m})$	$R(m)$
NKC	194	421	738	1050	1440	1910	2366	2880	3510	4060	4770	5249
RC	138	299	525	750	1030	1380	1710	2090	2560	2970	3310	3880
2.2	122	265	465	668	919	1230	1530	1880	2300	2670	3160	3500
2.4	109	236	415	599	825	1110	2380	1700	2080	2420	2870	3190
2.6	97	212	3.12	540	746	1000	1260	1540	1890	2210	2630	2930
2.8	87	120	334	488	676	910	1150	1410	1730	2020	2420	27.06)
3.0	78	. 176	300	443	615	831	1050	1290	1590	1870	2240	2510
3.2	71	152	26.5	402	561	762	959	1190	1470	1730	2080	2330
3.4	61	133	239	364	511	697	88.	1100	1360	1600	1940	2180
3.6	51	123	206	329	465	640	813	1020	1260	1490	1810	2050
3.8	42	96	177	294	422	585	749	939	1170	1390	1700	1930
4.0	36	82.	155	261	380	535	690	870	1090	1300	1590	1820
4.2	31	72	136	234	343	488	635	806	1010	1220	1500	1720
4.4	27	63	121	210	311	446	584	746	938	1140	1410	1630
4.6	24	56	108	190	283	408	538	692	873	1070	1330	1540
4.8	21	50	97	172	258	374	496	641	812	997	1260	1.470
5.0	19	45	88	155	23.5	343	457	394	755	933	2190	1400
5.2	17	40	79	142	214	31.5	421	549	701	871	1120	1330
5.4	15	36	1	128	195	287	386	506	648	810	1060	1260
5.6	13	32	63	115	176	260	351	463	594	747	980	1190
5.8	11	2.8	56	102	156	232	315	$4 \mathrm{th}^{6}$	537	679	9017	1110
6.0	8	21	43	79	123	184	252	336	437	360	756	951

US. customary														
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{0}=20 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} v_{\mathrm{tf}} \neq 25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d d}=30 \\ m p h \end{gathered}$	$\begin{gathered} V_{p}=35 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{t d}=4 i \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{a}=45 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=50 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=55 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{0}=60 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=65 \\ \text { mph } \\ \hline \end{gathered}$	$\begin{aligned} & V_{d}=70 \\ & \text { mph } \end{aligned}$	$\begin{gathered} v_{d t}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \text { mph } \end{gathered}$
\pm (\%)	R (ft)	$R(f t)$	8 (ta)	$R(f t)$	R $\{$ 挂	$R(\mathrm{ft})$	$R(\mathrm{ft})$	$R(t)$	$R(\mathrm{t})$	R (ft)	R (ti)	R(侄)	$R(\mathrm{ft})$	$\mathrm{R}(\mathrm{ft})$
NC	868	1580	2290	3130	4100	5230	6480	7870	9410	11100	12600	14100	15700	17400
R5,	614	1120	1630	2240	2950	3770	4680	5700	6820	8060	9130	10300	11500	12900
2.2	543	991	1450	2000	2630	3378	4190	5100	6110	7230	B200	9240	10400	11600
2.4	482	884	1300	1790	2360	3030	3770	4600	5520	6540	7430	8380	9420	10600
2.6	430	791	1170	16.10	2130	2740	3920	4170	5020	5950	6770	7660	8620	9670
2.8	384	729	1.050	1460	1930	2490	3110	3800	4580	5440	62 co	7030	7930	8910
3.0	341	635	944	1320	1760	2270	2840	3480	4200	4990	5710	6490	7330	8260
3.2	300	566	850	1200	1600	2080	2600	32×10	3860	4600	5280	6010	6810	7680
3.4	256	498	761	1080	1460	1900	2390	2940	3560	4250	4890	5580	6340	7180
3.6	2c9	022	$6 \% 3$	972	1320	1740	2190	2710	3290	3940	4540	52.10	5930	6720
3.8	176	358	583	864	1190	1590	2010	2490	3040	3650	4230	4860	5560	6320
4.0	151	309	511	766	1070	1440	1840	2300	2810	3390	3950	4550	5220	5950
4.2	131	270	452	584	960	1310	1680	2110	2590	3140	3680	4270	4910	5620
4.4	116	238	402	615	868	1190	1540	1940	2400	2920	3440	4010	4630	5320
4.6	102	212	360	555	788	1090	1410	1780	2210	2710	3220	3770	4380	5040
4.8	91	189	324	502	718	995	1300	1640	2050	2.510	3000	3550	4190	4790
5.0	82	169	292	436	654	911	1190	1510	1890	2330	2800	3330	3910	4550
5.2	73	152	264	413	595	833	1090	1390	1750	2160	2610	3120	3690	4320
5.4	65	136	237	373	340	759	99.5	1280	1610	1990	2429	2910	3460	4090
3.6	58	121	212	335	487	687	903	1160	2470	1830	2230	2700	3230	3840
5.8	51	106	186	296	$43 \pm$	611	806	1040	1320	1650	2020	2460	2970	3560
6.0	39	81	144	231	340	485	643	833	1060	1330	1660	2040	2500	3050

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain					ifte							S.	sto	ar			
	Maximum Grade (\%) for Specified Design Speed (km/h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	80	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rofling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detalled discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft$]$ of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximmm grades for rural arterials. When vertical curves for stopping sight dis-
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becatse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sight distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Metric				U.S. Customary			
Design Speed (km/h)	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
		Calculated (m)	Design (m)			Calculated (C)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

40 MPH DESIGN CRITERIA

BY: NVA
CHK'D BY: JDW DATE: TE: $-\frac{3 / 18 / 2020}{4 / 1 / 2020}$
CHK'D BY: JDW
(1) DESIGN CRITERIA MATRIX

MPMS NO.
SR 28 \qquad
\qquad Jefferson \qquad COUNTY
SEC N/A, Clarion _COUNTY

2 PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to l-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N)
N

design designation

RT 28
DESIGN CRITERIA Reconstruction
(4) traffic data

OPENING YEAR ADT (Average Daily Traffic) 7196 (2019)
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Suburban Neighborhood
DESIGN YEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 745
D (Directional Distribution) 52
TOPOGRAPHY Rolling
REMARKS Distant, PA
T (Truck Percentage) 8
North from New Bethlehem

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED VALUE	PROPOSED Value	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			40 MPH	35-40 MPH	40 MPH	Yes	DM-2, Table 1.3	
Lane Width			11'	11'-12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			3'-8'	8'-10'	8'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			N/A	38'-44'	N/A	N/A	DM-2, Sec 1.2C	
Minimum Horizontal Radius			600'	340'-485'	600'	Yes	AASHTO, Table 3-9	Entering Distant, PA
Maximum Superelevation Rate			Varies	6.0\%	6.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		1.50\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 83
	Maximum		6.90\%	6.00\%	6.00\%	Yes	AASHTO, Table 7-2	line segment 81
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	250'-305'	305'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	390'-445'	445'	Yes	AASHTO, Table 9-6	
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2, Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	N/A	N/A	DM-2, Table 2.2	

*Refer to Publication 10X, Design Manual 1X, Appendix P for more information on controlling criteria and design exceptions.
6 Any pedestrian and bicycle concerns/needs? Explain.
Any ADA compliance issues? Explain
Any transit issues? Explain
Any additional design issues? Explain

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-9. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=6 \%$

	$\begin{aligned} & V_{a}=20 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=30 \\ & k m / h \end{aligned}$	$\begin{aligned} & V_{o j}=40 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=50 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=60 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=70 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{o}=80 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=90 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{gathered} V_{d t}=100 \\ k m / h \end{gathered}$	$\begin{aligned} & V_{\sigma}=310 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=120 \\ & \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & V_{d}=130 \\ & k \mathrm{~m} / \mathrm{h} \end{aligned}$
$e(\%)$	$R(m)$	$R(\mathrm{~m})$	R (m)	$R(\mathrm{~m})$	B (m)	$8(m)$	$n(m)$	$8(\mathrm{~m})$	$R(\mathrm{~m})$	8 (m)	$R(\mathrm{~m})$	$R(m)$
NKC	194	421	738	1050	1440	1910	2366	2880	3510	4060	4770	5249
RC	138	299	525	750	1030	1380	1710	2090	2560	2970	3310	3880
2.2	122	265	465	668	919	1230	1530	1880	2300	2670	3160	3500
2.4	109	236	415	599	825	1110	2380	1700	2080	2420	2870	3190
2.6	97	212	3.12	540	746	1000	1260	1540	1890	2210	2630	2930
2.8	87	120	334	488	676	910	1150	1410	1730	2020	2420	27.06)
3.0	78	. 176	300	443	615	831	1050	1290	1590	1870	2240	2510
3.2	71	152	26.5	402	561	762	959	1190	1470	1730	2080	2330
3.4	61	133	239	364	511	697	88.	1100	1360	1600	1940	2180
3.6	51	123	206	329	465	640	813	1020	1260	1490	1810	2050
3.8	42	96	177	294	422	585	749	939	1170	1390	1700	1930
4.0	36	82.	155	261	380	535	690	870	1090	1300	1590	1820
4.2	31	72	136	234	343	488	635	806	1010	1220	1500	1720
4.4	27	63	121	210	311	446	584	746	938	1140	1410	1630
4.6	24	56	108	190	283	408	538	692	873	1070	1330	1540
4.8	21	50	97	172	258	374	496	641	812	997	1260	1.470
5.0	19	45	88	155	23.5	343	457	394	755	933	2190	1400
5.2	17	40	79	142	214	31.5	421	549	701	871	1120	1330
5.4	15	36	1	128	195	287	386	506	648	810	1060	1260
5.6	13	32	63	115	176	260	351	463	594	747	980	1190
5.8	11	2.8	56	102	156	232	315	$4 \mathrm{th}^{6}$	537	679	9017	1110
6.0	8	21	43	79	123	184	252	336	437	360	756	951

US. customary														
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{0}=20 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} v_{\mathrm{tf}} \neq 25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d d}=30 \\ m p h \end{gathered}$	$\begin{gathered} V_{p}=35 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{t d}=4 i \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{a}=45 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=50 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=55 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{0}=60 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=65 \\ \text { mph } \\ \hline \end{gathered}$	$\begin{aligned} & V_{d}=70 \\ & \text { mph } \end{aligned}$	$\begin{gathered} v_{d t}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \text { mph } \end{gathered}$
\pm (\%)	R (ft)	$R(f t)$	8 (ta)	$R(f t)$	R $\{$ 挂	$R(\mathrm{ft})$	$R(\mathrm{ft})$	$R(t)$	$R(\mathrm{t})$	R (ft)	R (ti)	R(侄)	$R(\mathrm{ft})$	$\mathrm{R}(\mathrm{ft})$
NC	868	1580	2290	3130	4100	5230	6480	7870	9410	11100	12600	14100	15700	17400
R5,	614	1120	1630	2240	2950	3770	4680	5700	6820	8060	9130	10300	11500	12900
2.2	543	991	1450	2000	2630	3378	4190	5100	6110	7230	B200	9240	10400	11600
2.4	482	884	1300	1790	2360	3030	3770	4600	5520	6540	7430	8380	9420	10600
2.6	430	791	1170	16.10	2130	2740	3920	4170	5020	5950	6770	7660	8620	9670
2.8	384	729	1.050	1460	1930	2490	3110	3800	4580	5440	62 co	7030	7930	8910
3.0	341	635	944	1320	1760	2270	2840	3480	4200	4990	5710	6490	7330	8260
3.2	300	566	850	1200	1600	2080	2600	32×10	3860	4600	5280	6010	6810	7680
3.4	256	498	761	1080	1460	1900	2390	2940	3560	4250	4890	5580	6340	7180
3.6	2c9	022	$6 \% 3$	972	1320	1740	2190	2710	3290	3940	4540	52.10	5930	6720
3.8	176	358	583	864	1190	1590	2010	2490	3040	3650	4230	4860	5560	6320
4.0	151	309	511	766	1070	1440	1840	2300	2810	3390	3950	4550	5220	5950
4.2	131	270	452	584	960	1310	1680	2110	2590	3140	3680	4270	4910	5620
4.4	116	238	402	615	868	1190	1540	1940	2400	2920	3440	4010	4630	5320
4.6	102	212	360	555	788	1090	1410	1780	2210	2710	3220	3770	4380	5040
4.8	91	189	324	502	718	995	1300	1640	2050	2.510	3000	3550	4190	4790
5.0	82	169	292	436	654	911	1190	1510	1890	2330	2800	3330	3910	4550
5.2	73	152	264	413	595	833	1090	1390	1750	2160	2610	3120	3690	4320
5.4	65	136	237	373	340	759	99.5	1280	1610	1990	2429	2910	3460	4090
3.6	58	121	212	335	487	687	903	1160	2470	1830	2230	2700	3230	3840
5.8	51	106	186	296	431	611	806	1040	1320	1650	2020	2460	2970	3560
6.0	39	81	144	231	340	485	643	833	1060	1330	1660	2040	2500	3050

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain					ifte							S.	sto	ar			
	Maximum Grade (\%) for Specified Design Speed (km/h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	80	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rofling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detalled discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft$]$ of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and shonid be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			USS. Custonaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximmm grades for rural arterials. When vertical curves for stopping sight dis-
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becatse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sigh distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Merric				U.S. customary			
Design	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
Speed (km / h)		Calculated (m)	Design (m)			Calculated (t)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn feft onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

45 MPH DESIGN CRITERIA

BY: NVA	DATE: $\frac{3 / 18 / 2020}{1 / 2020}$
CHK'D BY: JDW	

DESIGN CRITERIA MATRIX

(1)

MPMS NO \qquad $\frac{N / A}{\text { SEC N/A }}$ Armstrong
SR 28 $\overline{\text { SEC } \ldots \mathrm{N} / \mathrm{A}}, ~$ Clarion COUNTY

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to I-80. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area.

NHS? (Y/N) N \qquad STRAHNET? (Y/N) N

DESIGN DESIGNATION

DESIGN CRITERIA Reconstruction
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Rural
TOPOGRAPHY Rolling
REMARKS North of SR85, between New
Bethlehem and Hawthrone, North of Summerville
(4) TRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 7349 (2019)
DESIGN YEAR ADT (Average Daily Traffic) 8450
DESIGN YEAR (for Design Year ADT) $\frac{2045}{761}$
DHV (Design Hourly Volume) 761
D (Directional Distribution) 59
T (Truck Percentage) 13
\qquad

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-10b. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=8 \%$

Kivisick	登管						S cus							
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{aligned} & V_{d d}=20 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} V_{d}=25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=30 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{d}=35 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=40 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=45 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{t}=50 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=55 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=60 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=65 \\ m p h \end{gathered}$	$V_{d}=70$ mph	$\begin{gathered} V_{d}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \mathrm{mph} \end{gathered}$
e\{\%	R (f)	$R(\mathrm{ta})$	$R(f)$	$R(f t)$	$R(t)$	$\mathrm{R}(\mathrm{t})$	$8(\mathrm{ft})$	$R(f)$	$R(f)$	$8(f t)$	8 (ft)	$R(f)$	$R(\mathrm{f})$	$R(\mathrm{t})$
NC	932	1640	2370	3240	4260	5420	6710	8150	9720	11500	12900	14500	16100	17800
RC	676	1190	1720	2370	3120	3970	4930	5990	7150	8440	9510	10700	12000	13300
2.2	605	1070	1550	2130	2800	3570	4440	5400	5450	7620	8600	9660	10800	12000
2.4	546	959	1400	1930	2540	3240	4030	4910	5879	6930	7830	8810	9850	12000
2.6	496	872	1280	1760	2320	2960	3690	4490	5370	6350	7180	8090	9050	10100
2.8	453	796	1170	1610	2130	2720	3390	4130	4950	5850	6630	7470	8370	9340
3.0	415	730	1070	1480	1960	2510	3130	3820	4580	5420	6140	6930	7780	8700
3.2	382	672	985	1370	1820	2330	2900	3550	4250	5040	5720	6460	7250	8130
3.4	352	620	911	1270	1690	2170	2700	3300	3970	4700	5350	6050	6800	7620
3.6	37.4	572	845	1180	1570	2020	2520	3090	3710	4400	5010	5680	6400	7180
3.8	300	530	784	11100	1470	1890	2360	2890	3480	4140	4710	5350	5030	6780
4.0	277	490	729	1030	1370	1779	2220	2720	3270	3890	4.450	5050	5710	6420
4.2	255	453	678	955	1280	1660	2080	2560	3080	3670	4200	4780	5410	6090
4.4	235	418	630	893	1200	2560	2960	2410	2910	3470	3980	4540	5140	5800
4.6	215	384	585	834	1130	1470	1850	2280	2750	3290	3770	4310	4890	5539
4.8	193	349	542	779	1060	1390	1750	2160	2610	3120	3590	4100	4670	5280
5.0	172	314	499	727	991	1310	1650	2040	2470	2960	3410	3910	4460	5050
5.2	154	284	457	676	929	1230	3560	1930	2350	2820	3250	3740	4260	4840
5.4	139	258	420	627	870	1160	1480	1830	2230	2680	3110	3570	4090	4640
5.6	126	236	387	582	813	1090	1390	1740	2120	2550	2970	3420	3920	4460
5.8	115	216	358	542	761	1030	1320	1650	2010	2430	2840	3280	3760	4290
6.0	105	199	332	506	713	965	1250	1560	1920	2320	2710	3150	3620	4140
6.2	97	184	308	472	669	909	1180	1480	1820	2210	2600	3020	3480	3990
6.4	89	170	287	442	628	857	1110	1400	1730	2110	2490	2910	3360	3850
6.6	83	157	267	413	590	802	1050	1330	1650	2010	2380	2790	3240	3720
6.8	76	146	248	386	553	761	990	2260	1560	1910	2280	2690	3120	3600
7.1	70	135	231	360	518	716	933	1190	1480	1820	2180	2580	3010	3480
7.2.	64	125	214	336	485	672	878	1120	1400	1720	2070	2470	2900	3370
7.4	59	115	198	312	451	62.8	822	1060	1320	1630	1970	2350	2780	3250
7.6	54	105	182	287	417	583	765	980	1230	2530	1850	2230	2650	3120
7.8	48	94	164	261	3.90	533	702	901	1140	1410	1720	2090	2500	2970
8.0	38	76	134	214	314	444	587	758	960	1200	1480	1810	2210	2670

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain																	
	Maximum Grade (\%) for Specified Design Speed (km / h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	B0	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rolling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detailed discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft] of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximum grades for rural arterials. When vertical curves for stopping sight dis -
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becalse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sight distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Metric				U.S. Customary			
Design Speed (km/h)	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
		Calculated (m)	Design (m)			Calculated (C)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

55 MPH DESIGN CRITERIA

BY: NVA	DATE: $\frac{3 / 18 / 2020}{1 / 2020}$
CHK'D BY: JDW	

PROJECT DESCRIPTION: RT 28 Corridor Study from Kittanning to $\mathrm{I}-80$. This corridor plan will assist in the future planning and programming of potential transportation projects with in the study area

NHS? (Y/N) N \qquad

DESIGN CRITERIA $\frac{28}{\text { Reconstruction }}$
AREA SYSTEM (Urban/Rural) Rural
FUNCTIONAL CLASSIFICATION Regional Arterial
ROADWAY TYPOLOGY Rural
TOPOGRAPHY Rolling
REMARKS Most locations along corridor
except where other criteria is used

STRAHNET? (Y/N) N
(4) TRAFFIC DATA

OPENING YEAR ADT (Average Daily Traffic) 7349 (2019)
DESIGN YEAR ADT (Average Daily Traffic) 8450
DESIGN YEAR (for Design Year ADT) 2045
DHV (Design Hourly Volume) 761
D (Directional Distribution) 59
T (Truck Percentage) 13

Criteria*		Location (ENTIRE PROJECT OR BY STATION)	EXISTING VALUE	REQUIRED Value	PROPOSED VALUE	CRITERIA MET?	SOURCE OF DESIGN CRITERIA (AASHTO OR DM-2 Reference)	REMARKS (NOTE ANY DESIGN EXCEPTIONS)
Design Speed			55 MPH	45-55 MPH	55 MPH	Yes	DM-2, Table 1.3	
Lane Width			11'	11' to 12'	11'	Yes	DM-2, Table 1.3	
Shoulder Width			6^{\prime}	8' to 10'	8'	Yes	DM-2, Table 1.3	
Minimum Bridge Width			N/A	38^{\prime} to 44'	N/A	N/A	DM-2, Sec 1.2C	
Minimum Horizontal Radius			850'	587' to 960'	960'	Yes	AASHTO, Table 3-10b	North of Summerville
Maximum Superelevation Rate			Varies	8.0\%	8.0\%	Yes	DM-2, Table 1.3	
Vertical Grade	Minimum		0.20\%	0.50\%	0.50\%	Yes	DM-2, Table 1.3	line segment 132
	Maximum		7.10\%	5.00\%	5.00\%	Yes	AASHTO, Table 7-2	line segment 157
Minimum Stopping Sight Distance (SSD/HLSD) (vertical and horizontal)			Varies	360^{\prime} to 495'	495'	Yes	AASHTO, Table 7-1	
Minimum Intersection Sight Distance (ISD)			Varies	500' to 610'	610'	Yes	AASHTO, Table 9-6	
Minimum Cross Slope			Varies	2.0\%	2.0\%	Yes	DM-2, Table 1.3	
Minimum Vertical Clearance			N/A	16'-6"	16'-6"	Yes	DM-2, Table 2.2	

6 Any pedestrian and bicycle concerns/needs? Explain.
Any ADA compliance issues? Explain
Any transit issues? Explain
Any additional design issues? Explain

TABLE 1.2
ROADWAY TYPOLOGIES

ROADWAY CLASS	$\begin{gathered} \text { ROADWAY } \\ \hline \end{gathered}$	$\begin{gathered} \text { DESIRED } \\ \text { OPERATING } \\ \text { SPEED } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AVERAGE } \\ \text { TRIP } \\ \text { LENGTH } \\ \hline \hline \end{gathered}$	volume	INTERSECTION	COMMENTS
Arterial	Regional	$\begin{gathered} 50-90 \mathrm{~km} / \mathrm{h} \\ (30-55 \mathrm{mph}) \end{gathered}$	$\begin{gathered} 24-56 \mathrm{~km} \\ (15-35 \mathrm{mi}) \end{gathered}$	10,000- 40,000 veh/day	$\begin{gathered} 200-400 \mathrm{~m} \\ (660-1,320 \mathrm{ft}) \end{gathered}$	Roadways in this category would be considered "Principal Arterial" in traditional functional classification.
Arterial	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & 11-40 \mathrm{~km} \\ & (7-25 \mathrm{mi}) \end{aligned}$	$\begin{gathered} 5,000- \\ 25,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-400 \mathrm{~m} \\ (300-1,320 \mathrm{ft}) \end{gathered}$	Otten classified as "Minor Arterial" in traditional classification but may include road segments classified as "Principal Arterial".
Collector	Community	$\begin{aligned} & 40-90 \mathrm{~km} / \mathrm{h} \\ & (25-55 \mathrm{mph}) \end{aligned}$	$\begin{gathered} 8-16 \mathrm{~km} \\ (5-10 \mathrm{mi}) \end{gathered}$	$\begin{gathered} 5,000- \\ 15,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Often similar in appearance to a community arterial. Typically classified as "Major Collector".
Collector	Neighborhood	$\begin{aligned} & 40-60 \mathrm{~km} / \mathrm{h} \\ & (25-35 \mathrm{mph}) \end{aligned}$	$\begin{aligned} & <11 \mathrm{~km} \\ & (<7 \mathrm{mi}) \end{aligned}$	$\begin{gathered} <6,000 \\ \text { veh/day } \end{gathered}$	$\begin{gathered} 90-200 \mathrm{~m} \\ (300-660 \mathrm{ft}) \end{gathered}$	Similar in appearance to local roadways. Typically classified as "Minor Collector".
Local	Local	$\begin{aligned} & 30-50 \mathrm{~km} / \mathrm{h} \\ & (20-30 \mathrm{mph}) \\ & \hline \end{aligned}$	$\begin{aligned} & <8 \mathrm{~km} \\ & (<5 \mathrm{mi}) \\ & \hline \end{aligned}$	$\begin{aligned} & <3,000 \\ & \text { veh/day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60-200 \mathrm{~m} \\ (200-660 \mathrm{ft}) \\ \hline \end{gathered}$	

INTENTIONALLY BLANK

FIGURE 1.2
ILLUSTRATED ROADWAY TYPOLOGIES

FIGURE 1.2 (CONTINUED) ILLUSTRATED ROADWAY TYPOLOGIES

Table 3-10b. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{\max }=8 \%$

Kivisick	登管						S cus							
	$\begin{aligned} & V_{d}=15 \\ & \text { mph } \end{aligned}$	$\begin{aligned} & V_{d d}=20 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} V_{d}=25 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=30 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{d}=35 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=40 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=45 \\ \text { mph } \end{gathered}$	$\begin{gathered} v_{t}=50 \\ \mathrm{mph} \end{gathered}$	$\begin{gathered} V_{d}=55 \\ \mathrm{mph} \end{gathered}$	$\begin{aligned} & V_{d}=60 \\ & \text { mph } \end{aligned}$	$\begin{gathered} V_{d}=65 \\ m p h \end{gathered}$	$V_{d}=70$ mph	$\begin{gathered} V_{d}=75 \\ \text { mph } \end{gathered}$	$\begin{gathered} V_{d}=80 \\ \mathrm{mph} \end{gathered}$
e\{\%	R (f)	$R(\mathrm{ta})$	$R(f)$	$R(f t)$	$R(t)$	$\mathrm{R}(\mathrm{t})$	$8(\mathrm{ft})$	$R(f)$	$R(f)$	$8(f t)$	8 (ft)	$R(f)$	$R(\mathrm{f})$	$R(\mathrm{t})$
NC	932	1640	2370	3240	4260	5420	6710	8150	9720	11500	12900	14500	16100	17800
RC	676	1190	1720	2370	3120	3970	4930	5990	7150	8440	9510	10700	12000	13300
2.2	605	1070	1550	2130	2800	3570	4440	5400	5450	7620	8600	9660	10800	12000
2.4	546	959	1400	1930	2540	3240	4030	4910	5879	6930	7830	8810	9850	12000
2.6	496	872	1280	1760	2320	2960	3690	4490	5370	6350	7180	8090	9050	10100
2.8	453	796	1170	1610	2130	2720	3390	4130	4950	5850	6630	7470	8370	9340
3.0	415	730	1070	1480	1960	2510	3130	3820	4580	5420	6140	6930	7780	8700
3.2	382	672	985	1370	1820	2330	2900	3550	4250	5040	5720	6460	7250	8130
3.4	352	620	911	1270	1690	2170	2700	3300	3970	4700	5350	6050	6800	7620
3.6	37.4	572	845	1180	1570	2020	2520	3090	3710	4400	5010	5680	6400	7180
3.8	300	530	784	11100	1470	1890	2360	2890	3480	4140	4710	5350	5030	6780
4.0	277	490	729	1030	1370	1779	2220	2720	3270	3890	4.450	5050	5710	6420
4.2	255	453	678	955	1280	1660	2080	2560	3080	3670	4200	4780	5410	6090
4.4	235	418	630	893	1200	2560	2960	2410	2910	3470	3980	4540	5140	5800
4.6	215	384	585	834	1130	1470	1850	2280	2750	3290	3770	4310	4890	5539
4.8	193	349	542	779	1060	1390	1750	2160	2610	3120	3590	4100	4670	5280
5.0	172	314	499	727	991	1310	1650	2040	2470	2960	3410	3910	4460	5050
5.2	154	284	457	676	929	1230	3560	1930	2350	2820	3250	3740	4260	4840
5.4	139	258	420	627	870	1160	1480	1830	2230	2680	3110	3570	4090	4640
5.6	126	236	387	582	813	1090	1390	1740	2120	2550	2970	3420	3920	4460
5.8	115	216	358	542	761	1030	1320	1650	2010	2430	2840	3280	3760	4290
6.0	105	199	332	506	713	965	1250	1560	1920	2320	2710	3150	3620	4140
6.2	97	184	308	472	669	909	1180	1480	1820	2210	2600	3020	3480	3990
6.4	89	170	287	442	628	857	1110	1400	1730	2110	2490	2910	3360	3850
6.6	83	157	267	413	590	802	1050	1330	1650	2010	2380	2790	3240	3720
6.8	76	146	248	386	553	761	990	2260	1560	1910	2280	2690	3120	3600
7.1	70	135	231	360	518	716	933	1190	1480	1820	2180	2580	3010	3480
7.2.	64	125	214	336	485	672	878	1120	1400	1720	2070	2470	2900	3370
7.4	59	115	198	312	451	62.8	822	1060	1320	1630	1970	2350	2780	3250
7.6	54	105	182	287	417	583	765	980	1230	2530	1850	2230	2650	3120
7.8	48	94	164	261	3.90	533	702	901	1140	1410	1720	2090	2500	2970
8.0	38	76	134	214	314	444	587	758	960	1200	1480	1810	2210	2670

tance are considered, there are seldom advantages to using the maximum grade values except when grades are long.

Table 7-2. Maximum Grades for Rural Arterials

Type of Yerrain																	
	Maximum Grade (\%) for Specified Design Speed (km / h)								Maximum Grade (\%) for Specified Design Speed (mph)								
	60	70	B0	90	100	110	120	130	40	45	50	55	60	65	70	75	30
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rolling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Cross Stope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally designed with a centerline crown and traveledway cross slopes ranging from 1.5 to 2 percent with the higher values being most prevalent.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate based on the design speed should be used. Superelevation rates should not exceed 12 percent; however, where ice and snow conditions are a factor, the maximum superelevation rate should not exceed 8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevated section and vice versa. Adjustments in design runotf lengths may be needed for smooth riding, drainage, and appearance. Section 3.3 provides a detailed discussion of superelevation and tables of appropriate superelevation rates and runoff tengths for various design speeds.

7.2.3 Cross-Sectional Elements

Widths of Roadway

The logical approach to determining appropriate lane and shoulder widths is to provide a width related to the traffic demands. Table $7-3$ provides values for the width of traveled way and usable shoulder that should be considered for the volumes indicated. Regardless of weather conditions, shoulders should be usable at all times. On high-volume highways, shoulders shoutd preferably be paved, but paved shoulders may not always be practical. As a minimum, 0.6 m [2 ft] of the shoulder width should be paved to provide for pavement support, wide vehicles, and collision avoidance. Where bicycles are to be accommodated on the shoulder, a minimum paved width of $1.2 \mathrm{~m}[4 \mathrm{ft}]$ should be used. The shoulder should be constructed to a uniform width for relatively long stretches of roadway. For additional information concerning shoulders, refer to Section 4.4.

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight distance should be provided throughout the length of the roadway. Passing and decision sight distances infurence roadway operations and should be provided wherever practical. Providing decision sight distance at locations where complex decisions are made greatly enhances the capability for drivers to safely accomplish maneuvers. Examples of locations where complex decisions are needed include interchanges, high-volume intersections, transitions in roadway width, and transitions in the number of lanes. Providing adequate sight distance on rural arterials, which may combine both high speeds and high traffic volumes, can be complex. Table $7-1$ presents the recommended minimum values of stopping and passing sight distance. Refer to Section 3.2 for a comprehensive discussion of sight distance and for tabulated values for decision sight distance.

Table 7-1. Minimum Sight Distances for Arterials

			US Customaty		
Design Speed (km/h)	Minimum Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Design Speed (mph)	Minimum Stopping Sight Distance (ft)	Minimum Passing Sight Distance (ft)
50	65	160	30	200	500
60	85	180	35	250	550
70	105	210	40	305	600
80	130	245	45	360	700
90	160	280	50	425	800
100	185	320	55	495	900
110	220	355	60	570	1000
120	250	395	65	645	1100
130	285	440	70	730	1200
			75	820	1300
			80	910	1400

deally, intersections and railroad crossings should be grade separated or provided with adequate sight distance. Intersections should be placed in sag or tangent locations, or both, where practical, to provide maximum visibility of the roadway and pavement markings.

Alignment

A smooth tlowing alignment is desirable on a rual arterial. Changes in alignment, both horizontal and vertical, should be sufficiently gradual to avoid surprising the driver. Minimum radii shoukd be used sparingly; short horizontal curves-m-particulatly at the end of long tangents---shoald be avoided. Roads with welf-designed and consistent alignment usually function more efficiently and with lower crash rates than roads with poor alignment, even where entanced signing and pavement marking are provided.

Grades

The length and steepness of grades directly affect the operational characteristics of an arterial. Table 7-2 presents recommended maximum grades for rural arterials. When vertical curves for stopping sight dis -
intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 moludes design vakes, based on the time gaps for the design vehicles included in Table 9-5.

No aditustment of the recommended sight distance values for the major-road grade is generally needed becalse both the major- and minor-road vehcle will be on the same grade when departing from the intersection. However, if the minorroad design vehicle is a heavy track and the intersection is tocated near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sight distance based on the major-road grade shoukd be considered.

Table 9-6. Design Intersection Sight Distance-Case B1, Left Turn from Stop

Metric				U.S. Customary			
Design Speed (km/h)	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars		Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
		Calculated (m)	Design (m)			Calculated (C)	Design (ft)
20	20	41.7	45	15	80	165.4	170
30	35	62.6	65	20	115	220.5	225
40	50	83.4	85	25	155	275.6	280
50	65	104.3	105	30	200	330.8	335
60	85	125.1	130	35	250	385.9	390
70	105	146.0	150	40	305	441.0	445
80	130	166.8	170	45	360	496.1	500
90	160	187.7	190	50	425	551.3	555
100	185	208.5	210	55	495	606.4	610
110	220	229.4	230	60	570	661.5	665
120	250	250.2	255	65	645	716.6	720
130	285	271.1	275	70	730	771.8	775
-	-	\cdots	-	75	820	826.9	830
-	-	-	-	80	91.0	882.0	885

Note: intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight cistance recalculated.

Sight disfance design for lett turn at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehick with a clearance to the through lanes of approximately in if at both ends of the vehicle, tho separate analysis for the departure sight triangle for left turns is needed on the minot-road approach for the near roadway to the fett. In most cases, the departure sight triangle for right

APPENDIX I
 SPC Funding Program

TRANSPORTATION \＆COMMUNITY FUNDING PROGRAMS

Grant and Reimbursement Programs

 to Advance and Guide Effective Investment of Public FundsThe Southwestern Pennsylvania Commission（SPC）serves the 10－county Pittsburgh region as the official Metropolitan Planning Organization，Local Development District，and Economic Development District． SPC＇s Transportation Department meets federal mandates with the publication of a long－range（20－year） transportation plan and the establishment of a short－range（4－year）Transportation Improvement Program （TIP）．Planning activities range from data systems and modeling to special transportation studies and air quality analysis．

SPC is committed to assisting our local governments and agencies in the preparation，planning，and execution of their community＇s priority projects and investments．The information within this document will provide local project sponsors a guide to available resources that can assist with the implementation of a community＇s shared goals．

Inside this Issue：

Act 13 Programs（Marcellus Legacy Fund）： 2， 3
Multimodal，Road，Bridge，Safety，Signal，Congestion Mitigation，and Loan Programs：4， 5
DCNR C2P2： 5
DEP Grants，Loans，and Rebates： 6
Calendar of Programs： 7

Act 13 Programs (Marcellus Legacy Fund)

The Marcellus Legacy Fund was created by Act 13 of 2012 to provide for the distribution of unconventional gas well impact fees to counties, municipalities, and commonwealth agencies. Pursuant to Section 2315 (a) (6) (i) of the Act, a portion of the fee revenue will be transferred to the Commonwealth Financing Authority for the statewide initiatives listed on pages 2 \& 3 :

Abandoned Mine Drainage (AMD) Abatement and Treatment Program

Purpose: Funding for projects that involve the reclamation of Abandoned Mine Well(s); construction of a new AMD site; remediation and repair of existing AMD project sites; operation and maintenance maintaining current AMD remediation sites; establishment of trust fund to ensure ongoing maintenance is achieved; and, monitoring of water quality to track or continue to trace non-point source load reductions resulting from AMD remediation projects.
Eligibility: Municipalities; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses
Deadline: Applications accepted between February 1, 2019 and May 31, 2019
Match/Funding: 15\% match of the total project cost; grants do not exceed \$1,000,000
Website: https://dced.pa.gov/programs/abandoned-mine-drainage-abatement-treatment-program-amdatp/

Baseline Water Quality Data Program

Purpose: Funding for projects that involve practices for water sample collection and analysis to document existing groundwater quality conditions on private water supplies.
Eligibility: Municipalities; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses
Deadline: Applications accepted between February 1, 2019 to May 31, 2019
Match/Funding: 15\% match of the total project cost; grants do not exceed \$250,000
Website: https://dced.pa.gov/programs/baseline-water-quality-data-program/

Flood Mitigation Program

Purpose: Funding for flood mitigation projects authorized by a flood protection authority, the Department of Environmental Protection, the U.S. Army Corps of Engineers, the U.S. Department of Agriculture's Natural Resources Conservation Service, or identified by a local government. Grants are awarded to eligible applicants for projects with a total cost of $\$ 50,000$ or more.
Eligibility: Municipalities; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses
Deadline: Applications accepted between February 1, 2019 and May 31, 2019
Local Match Requirement: 15\% match of the total project cost; grants do not exceed \$500,000
Website: https://dced.pa.gov/programs/flood-mitigation-program-fmp/

Greenways, Trails and Recreation Program

Purpose: Funding for planning, acquisition, development, rehabilitation and repair of greenways, recreational trails, open space, parks and beautification projects. Projects can involve development, rehabilitation and improvements to public parks, recreation areas, greenways, and trails, as well as river conservation.
Eligibility: Municipalities; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses

Deadline: Applications accepted between February 1, 2019 and May 31, 2019
Match/Funding: 15\% match of the total project cost; grants do not exceed \$250,000
Website: https://dced.pa.gov/programs/greenways-trails-and-recreation-program-gtrp/

Orphan or Abandoned Well Plugging Program

Purpose: Funds for orphaned or abandoned well plugging projects, including the cleaning out and plugging of abandoned and orphan oil and gas wells; stray gas mitigation systems; and well venting projects.
Eligibility: Municipalities; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses

Deadline: Applications accepted between February 1, 2019 and May 31, 2019
Match/Funding: No match required; grants do not exceed \$250,000
Website: https://dced.pa.gov/programs/orphan-abandoned-well-plugging-program-oawp/

Sewage Facilities Program

Purpose: Funding for costs associated with the planning work required under the Pennsylvania Sewage Facilities Act (Act 537).
Eligibility: Municipalities; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses
Deadline: Applications accepted between February 1, 2019 and May 31, 2019
Match/Funding: 50\% match of the total project cost; grants do not exceed \$100,000
Website: https://dced.pa.gov/programs/sewage-facilities-program-sfp/

Watershed Restoration and Protection Program

Purpose: Funding for watershed restoration and protection projects that involve the construction, improvement, expansion, repair, maintenance or rehabilitation of new or existing watershed protection BMPs. The overall goal of the program is to restore and maintain restored stream reaches impaired by the uncontrolled discharge of nonpoint source polluted runoff, and ultimately to remove these streams from the DEP's Impaired Waters list.

Eligibility: Municipalities; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses

Deadline: Applications accepted between February 1, 2019 and May 31, 2019
Match/Funding: 15\% match of the total project cost; grants do not exceed \$300,000
Website: https://dced.pa.gov/programs/watershed-restoration-protection-program-wrpp/

Funding Programs

SPC and PennDOT Transportation Alternatives Set-Aside Program

Purpose: The Transportation Alternatives Set-Aside (TASA) Program provides funding for programs and projects defined as transportation alternatives, including on- and off-road pedestrian and bicycle facilities; infrastructure projects for improving non-driver access to public transportation and enhanced mobility; environmental mitigation; recreational trail program projects; and, safe routes to school projects. Key criterion in the review of applications will be readiness for implementation and delivery, safety, consistency with local or regional plans; collaboration with stakeholders; and, statewide or regional significance.
Eligibility:

- Local governments
- Regional transportation authorities
- Transit agencies
- Natural resource or public land agencies, including federal agencies
- School districts, local education agencies, or schools
- Tribal governments
- A nonprofit entity responsible for the administration of local transportation safety programs
- Any other governmental entity with responsibility for oversight of transportation or recreational trails

Deadline: Applications accepted between August 26, 2019 and September 20, 2019
Local Match Requirement: There is no match requirement; however, local sponsors pay all costs for pre-construction activities (design, environmental clearance, right of way, utilities, etc.) and PennDOT provides 100% cost reimbursement for the construction phase (including construction inspection).
Website: https://spcregion.org/trans plan tap.asp

DCED Multimodal Transportation Fund (MTF)

Purpose: Provides grants to encourage economic development and ensure that a safe and reliable system of transportation is available to Pennsylvania residents. The program is intended to provide financial assistance to improve transportation assets that enhance communities, pedestrian safety, and transit revitalization. The program is under the direction of the Commonwealth Financing Authority.
Eligibility: Local Governments; Counties; Councils of Governments; Businesses \& Non-Profits; Economic Development Organizations; Public Transportation Agencies (including but not limited to an airport authority, public airport, port authority, or similar public entity); and, Rail and Freight Ports
Deadline: Applications are accepted between March 1, 2019 and July 31, 2019
Local Match Requirement: 30% match of requested amount (state/federal grants do not count as match)
Website: http://community.newpa.com/programs/multimodal-transportation-fund/

PennDOT Pennsylvania Infrastructure Bank (PIB)

Purpose: A PennDOT program that provides low-interest loans to accelerate priority transportation projects. Loan emphasis is on construction projects, but other project phases such as design, right-of-way acquisition, and transportation equipment purchases will be considered. Projects financed by the PIB include: aviation, highway/bridge, rail freight, and transit.
Eligibility: Local Governments; Counties; Transportation Authorities; Economic Development Agencies;
Non-Profit Organizations; and Private Corporations
Deadline: Always accepting applications
Website: http://www.penndot.gov/ProjectAndPrograms/Planning/Pages/PA-Infrastructure-Bank.aspx

PennDOT Automated Red Light Enforcement Program (ARLE)

Purpose: The program provides opportunities to improve safety and reduce congestion. ARLE intends to reduce violations and crashes, provide additional safety benefits to highway users, and improve pedestrian safety. The types of eligible projects are wide ranging when considering highway safety or mobility. It is the intent of the ARLE Program to fund worthwhile projects that can be completed at a relatively low cost, and award grants to projects that will be fully funded at the execution of the grant agreement date.
Eligibility: Local Governments; Counties; Councils of Governments; Authorized Organizations; Institutions of Higher Education; Watershed Organizations; For-Profit Businesses
Deadline: Applications accepted between June 1, 2019 and June 30, 2019
Local Match Requirement: No matching funds are required for eligibility in the ARLE program
Website: http://www.dot.state.pa.us/Portal\ Information/Traffic\ Signal\ Portal/FUNDARLE.html

SPC Congestion Mitigation Air Quality Improvement Program (CMAQ)

Purpose: The CMAQ Program provides funds for transportation projects and programs that will contribute to attainment or maintenance of the national ambient air quality standards for ozone, carbon monoxide, and particulate matter; and supports goals of the U.S. Department of Transportation: improving air quality, and relieving congestion. Project types include: traffic flow and signal improvements, transportation demand management, transit improvements and programs, commuter bicycle and pedestrian improvements, and diesel emission reductions.
Eligibility: Any qualified government entity, including local governments, regional transit agencies, port authorities, and state agencies, is eligible to apply for CMAQ funding. Non-profits and private sector entities may partner with an eligible applicant to apply for CMAQ funding.
Deadline: CMAQ application period closes September 9, 2019
Local Match Requirement: 20\% match of total project cost (by phase) from local, state, or other non-federal sources
Website: https://www.spcregion.org/trans tip cmaq.asp

DCNR Community Conservation Partnerships Program (C2P2)

Purpose: DCNR's Bureau of Recreation and Conservation provides a single point of contact for communities and non-profit conservation agencies seeking state assistance through the C2P2 Program in support of local recreation and conservation initiatives and those that implement Pennsylvania's Comprehensive Outdoor Recreation Plan. This assistance can take the form of grants, technical assistance, information exchange, and training. All of DCNR's funding sources are combined into one annual application cycle and there is a single application format and process with one set of requirements and guidelines.
Eligibility: A wide range of grant and technical assistance programs are offered through C2P2 to help
communities, land conservancies, and non-profit organizations plan, acquire, and develop:

- Recreation, park and conservation facilities
- Watersheds and rivers corridors
- Greenways and trails
- Heritage areas and facilities
- Critical habitat, natural areas \& open space

Deadline: Applications accepted between January 15, 2020 and April 22, 2020
Local Match Requirement: Generally, a 50% match by either cash or non-cash value is required
Website: http://www.dcnr.state.pa.us/brc/grants/

Department of Environmental Protection (DEP): Loan, Grant, and Rebate Programs

The DEP has grants and loans, as well as rebates to assist individuals, groups, and businesses with a host of environmental issues. Due to the fact that many of DEP's programs are dependant on annual funding from the commonwealth's budget, program availability and application dates can vary widely and are historically inconsistent. Interested program applicants should use DEP's Grant and Loan Programs Center website to view available grants and loans. Some of the most utilized DEP Programs are:

- County and Municipal Recycling Financial Assistance Programs
- Alternative Fuels Incentive Grant Program
- Small Business Ombudsman's Grants and Loans
- Driving PA Forward
- Growing Greener Grants
- Environmental Education Grants

PennDOT Multimodal Transportation Fund

Purpose: Provides grants to ensure that a safe and reliable system of transportation is available to the residents of this commonwealth. The program is intended to provide financial assistance to municipalities, councils of governments, businesses, economic development organizations, public transportation agencies, rail freight, passenger rail, and ports in order to improve transportation assets that enhance communities, pedestrian safety, and transit revitalization.

Eligibility: Municipalities; Council of Governments; Business/Non-profit; Economic Development Organization; Public Transportation Agency; Ports or Rail / Freight Entity

Deadline: Applications accepted between September 9, 2019 and November 9, 2019
Local Match Requirement: 30\% match of the amount awarded; grants normally do not exceed \$3,000,000
Website: https://www.penndot.gov/ProjectAndPrograms/MultimodalProgram/Pages/default.aspx

Green Light - Go

Purpose: The Green Light - Go: Pennsylvania's Municipal Signal Partnership Program is a competitive state grant program designed to improve the efficiency and operation of existing traffic signals located in the Commonwealth of Pennsylvania. Established by Act 89 of 2013 and revised by Act 101 of 2016, the program is administered by the Pennsylvania Department of Transportation and is purposed to improve mobility and safety at signalized intersections.

Eligibility: Municipalities and Planning Organizations
Deadline: Applications were accepted between October 15, 2018 through January 11, 2019
Local Match Requirement: Minimum 20\% match/reimbursement
Website: http://www.dot.state.pa.us/portal\ information/traffic\ signal\ portal/fundglg.html

2020 Calendar of Programs Anticipated Application Opening \& Closing Dates*

Jan.	Feb.	March	April	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
	Act 13 Programs	Act 13 Programs	Act 13 Programs	Act 13 Programs							
							$\begin{gathered} \text { SPC } \\ \text { TASA } \end{gathered}$	$\begin{gathered} \text { SPC } \\ \text { TASA } \end{gathered}$			
		DCED MTF									
$\begin{array}{\|c} \text { PennPOT } \\ \text { PIB } \end{array}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$	$\begin{aligned} & \text { PennPOT } \\ & \text { PIB } \end{aligned}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$	$\begin{aligned} & \text { PennPOT } \\ & \text { PIB } \end{aligned}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$	$\begin{aligned} & \text { PennPOT } \\ & \text { PIB } \end{aligned}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$	$\begin{gathered} \text { PennPOT } \\ \text { PIB } \end{gathered}$
					PennPOT ARLE						
							CMAQ	CMAQ			
DCNR C2P2	$\begin{aligned} & \text { DCNR } \\ & \text { C2P2 } \end{aligned}$	$\begin{aligned} & \text { DCNR } \\ & \text { C2P2 } \end{aligned}$	DCNR C2P2								
								$\begin{aligned} & \text { PennPOT } \\ & \text { MTF } \end{aligned}$	$\begin{gathered} \text { PennPOT } \\ \text { MTF } \end{gathered}$	$\begin{gathered} \text { PennPOT } \\ \text { MTF } \end{gathered}$	
					GreenLight-Go (Deadline Varies)						

*Funding programs and the agencies that administer them oftentimes will alter anticipated application periods. Contact these agencies or SPC for up-to-date application information.

SPC Transportation Department Planning and Programming Contact Information:

Ryan Gordon

Transportation Program Development Manager
412-391-5590 x333
rgordon@spcregion.org

[^0]: *Each point type receives a different list of concerns (\#4-7)

[^1]: *Each point type receives a different list of concerns (\#4-7)

[^2]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^3]: Level of Service and Other Performance Measures with Passing Lane

[^4]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^5]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^6]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^7]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^8]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^9]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^10]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^11]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^12]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^13]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^14]: Level of Service and Other Performance Measures with Passing Lane

[^15]: Level of Service and Other Performance Measures with Passing Lane

[^16]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^17]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^18]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^19]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^20]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^21]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 2.4 veh-h

[^22]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 0.7 veh-h

[^23]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl A
 Peak 15-min total travel time, TT15 1.0 veh-h

[^24]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl A
 Peak 15-min total travel time, TT15 0.7 veh-h

[^25]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 1.0 veh-h

[^26]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 1.4 veh-h

[^27]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 2.0 veh-h

[^28]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 1.5 veh-h

[^29]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl A
 Peak 15-min total travel time, TT15 1.0 veh-h

[^30]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 1.5 veh-h

[^31]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 0.4 veh-h

[^32]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl A
 Peak 15-min total travel time, TT15 1.2 veh-h

[^33]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 0.9 veh-h

[^34]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl B
 Peak 15-min total travel time, TT15 2.7 veh-h

[^35]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^36]: Level of Service and Other Performance Measures with Passing Lane
 Level of service including passing lane, LOSpl E
 Peak 15-min total travel time, TT15

 - veh-h

[^37]: Level of Service and Other Performance Measures with Passing Lane

[^38]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^39]: Level of Service and Other Performance Measures with Passing Lane \qquad

[^40]: Level of Service and Other Performance Measures with Passing Lane

